

Getting Started with OpenCart
Module Development

Master your OpenCart modules and code!

Rupak Nepali

BIRMINGHAM - MUMBAI

Getting Started with OpenCart Module Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-037-7

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Rupak Nepali

Reviewers
Jack W. Davis

Aditya Menon

Acquisition Editor
Akram Hussain

Commissioning Editor
Subho Gupta

Technical Editors
Pooja Arondekar

Menza Mathew

Copy Editor
Mradula Hegde

Sayanee Mukherjee

Project Coordinator
Amey Sawant

Proofreader
Bernadette Watkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

About the Author

Rupak Nepali, a PHP programmer from Nepal, has been working on OpenCart
since 2010 and has completed many projects and made many modules on OpenCart
to meet client requirements. He handles http://opencartnepal.com personally
as well as updates his personal site http://rupaknepali.com.np with his works
Mr. Nepali currently works as a full-time freelancer on oDesk as well as on various
freelancer sites. He holds a Bachelor's degree in Computer Information Systems.

I wish to thank my parents, especially my mother Subthara Nepali
and my father Bhairab Nepali, who emphasized the importance of
literacy, and my brothers who helped at every step, as well as all my
friends, and seniors, who provided their support and encouragement
to write this book.

Thanks to Packt Publishing who provided me with such a great
opportunity and all the team members who assisted me in
publishing this book.

About the Reviewers

Jack W. Davis is an e-commerce developer specializing in OpenCart and on-page
SEO for online stores. He runs an OpenCart development company called Destrove,
which has helped hundreds of businesses expand, upgrade, and design their
e-commerce stores. With years of development experience and a creative outlook
on software design, Jack has become a recognized figure in OpenCart development
communities.

Jack also runs a popular e-commerce news and tutorial website www.CartAdvisor.
com, where he spends most of his time writing about e-commerce software and
helping others customize their online stores.

Aditya Menon is an experienced developer, and the web is his primary platform.
Aditya works for Adbhuth, a privately held start-up. An overview of his strengths,
functions, and aspirations include predominantly using PHP and JavaScript. He has
written and improvised applications working with teams from across five continents.
He is happy to produce and extend intelligently built code bases, with exemplary
architectures. He also follows industry standards and best practice discussions closely,
and acts on wisdom gained from these arenas. Aditya is currently a consultant and a
developer on multiple start-up teams from across the world. He is constantly on the
lookout for new tools and techniques to make development faster, easier, and more
joyful. He looks at a future where technology in general and software in particular,
play even more important and impressive roles in human life. Learning new languages
and paradigms to build these tools of the future is what delights him the most. He
currently lives in New Delhi, India. He is a 23-year-old man, eager to travel the world,
and explore new opportunities.

I would like to thank Mymo, mom, and dad!

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Getting Started with OpenCart Modules	 5

Creating the Hello World module	 5
Changes made in the admin folder	 7
Changes made in the catalog folder	 8
Installing, configuring, and uninstalling a module	 10

Installing a module	 10
Configuring the module	 11
Layouts for the module	 13
Positions for the module	 14
Status of the module	 15
Sort order of the modules	 15
Show same module in different layouts	 15
Effects of clicking on the Add Module button	 16
Uninstalling the module	 16

File structure – admin and frontend	 16
Creating the language files for the admin module in OpenCart	 16
Creating the controller in the admin section of the OpenCart module	 17
Creating the template file at admin in the OpenCart module	 22
Breadcrumbs section for the module	 22
Creating the language file for catalog (frontend) module in OpenCart	 27
Creating the controller file for catalog (frontend) module in OpenCart	 27
Creating the template file for catalog (frontend) module in OpenCart	 29

Summary	 30
Chapter 2: Describing The Code of Extensions	 31

Global library methods	 31
Detailed description of the Featured module	 48

Configuring the Featured module in OpenCart 1.5.5.1	 48
Exploring the code used in the Featured module	 49

Exploring the featured.php file under the admin folder	 50
Exploring the featured.tpl file under admin folder	 52

Table of Contents

[ii]

Exploring the featured.php file under the catalog folder	 53
The Shipping module	 54

Changes made in the admin folder	 55
Changes made in the catalog folder	 55

The Payment module	 57
Off-site payment	 58
On-site payment	 58

The Order Total module	 58
Summary	 59

Chapter 3: Creating Custom OpenCart Modules	 61
Getting started with feedback management	 61

Database tables for feedback	 61
Creating files at the admin section for feedback	 64

Creating the language file at the admin section	 64
Creating the model file at the admin section	 65
Creating the controller file at the admin section	 71
Creating the template files for form and list at the admin	 78
Creating the model file at the catalog folder frontend	 81
Creating the language file at the frontend	 82
Creating the controller file at the frontend	 82
Creating the template file at the frontend	 85

The Tips module	 88
Creating the language file at the admin section	 89
Creating the controller file at the admin section	 89
Creating the template file at the admin section	 92
Changes made in the cart file at the frontend	 93
Changes in the shopping cart page to show tips	 94

Summary	 95
Index	 97

Preface
If you can code OpenCart modules, you can customize OpenCart and make
e-commerce sites easier to administer and also change the way the default OpenCart
system works. This book shows you how to create all sorts of extensions: OpenCart
module, Order Total module, ideas for creating payment, shipping modules, and
ways to create custom pages and forms on OpenCart module to carry out the insert,
edit, delete, and list functions.

This book focuses on teaching you all aspects of OpenCart modules by showing
and defining code examples. The book uses default OpenCart module to clone other
modules, the process by which one module gets transferred to another. It shows each
and every line of code and describes them so readers know what the code does. You
will clone the Google_talk module in the first chapter. In the second chapter, you will
learn about all the available methods in OpenCart, and at last you will create two
custom module feedback pages and the Tips Order Total modules.

Each chapter teaches you to make a new OpenCart module; you will thus be able to
make three modules by reading this book. You will be able to create the Hello World
module by cloning the Google talk module that you can then change to the Welcome
Message module. Likewise, you will get a description of each code of default featured
module of OpenCart, and then create the Feedback pages to manage the feedbacks.
In the end, you will be able to create an Order Total module called Tips Order Total
module.

Each chapter builds a practical module from the ground up using step-by-step
instructions and examples.

Preface

[2]

What this book covers
Chapter 1, Getting Started with OpenCart Module, shows us how to clone the
Google_talk module to the Hello World module and lists ways to install,
configure, and uninstall the OpenCart module and show the structure of the
file of admin and frontend.

Chapter 2, Describing The Code of Extensions, lists all global methods of OpenCart,
shows you how to configure the feature module, describes the code of the feature
module, shows the way to start the coding for the shipping module, and describes
the payment module.

Chapter 3, Create Custom OpenCart Module, shows you how to create a feedback module
and the Tips Order Total module. It also shows how code works and are managed.

What you need for this book
OpenCart, along with knowledge of the backend and frontend of the software
is needed for this book.

Who this book is for
This book is for programmers working with OpenCart, who want to develop
custom OpenCart modules. You need to be familiar with the basics of OpenCart and
PHP programming; after reading the book, you will be able to create customized
OpenCart modules.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " As given at the controller,
$group=helloworld, $data is $_POST, and $store_id is 0.."

A block of code is set as follows:

public function install($type, $code) {
 $this->db->query("INSERT INTO " . DB_PREFIX ."extension SET `type`
= '" . $this->db->escape($type) . "', `code` = '" . $this->db-
>escape($code) . "'");
}

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: " The file
structure is divided into two sections admin and catalog".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started with
OpenCart Modules

OpenCart is an e-commerce cart application built with its own in-house framework
that uses the Model View Controller (MVC) language pattern; thus each module in
OpenCart also follows the MVCL patterns. The controller creates logic and gathers
data from the model and passes it to display them in the view. The OpenCart
modules have admin and catalog folders. The files in the admin folder help in
controlling the settings of modules and the files in the catalog folder handle
the presentation layer (frontend). Each module has its own files by which it gets
modular, and changing one module's file does not affect other modules.

Creating the Hello World module
We assume that you already know PHP and have installed OpenCart, and are
familiar with the OpenCart backend and frontend, as well as you have some coding
knowledge of PHP.

You are going to create the Hello World module which just has one input box in
the admin settings for the module, and the same content is shown on the frontend.
The first step to creating a module is using a unique name, so that there will not be
a conflict with other modules. The same unique name is used to create the filename
and classname to extend the controller and the model.

Getting Started with OpenCart Modules

[6]

There are generally six to eight files that need to be created for each module, and
they follow a similar structure. If there is an interaction with the database tables, we
have to create two extra models. The following screenshot shows the hierarchy of
files and folders of an OpenCart module:

So now you know the basic directory structure of OpenCart module. The file
structure is divided into two sections admin and catalog. The admin folders and files
deal with the setting of the modules and data handling, while the catalog folders
and files handle the frontend.

Let's start with an easy way to make a module. You are going to make the duplicate
of the default Google Talk module of OpenCart and change it to the Hello World
module. We are using Dreamweaver to work with files.

Chapter 1

[7]

Changes made in the admin folder
Following are the steps to make changes in the admin folder:

1.	 Navigate to admin/controller/module/ and copy google_talk.php and
paste in the same folder. Rename it to helloworld.php and open it in your
favorite text editor, then look for the following line of code:
classControllerModuleGoogleTalk extends Controller {

Change the class name to:

classControllerModuleHelloworld extends Controller {

2.	 Now find google_talk and replace all with helloworld as shown in the
following screenshot:

3.	 Then, save the file.
4.	 Navigate to admin/language/english/module/ and copy google_talk.

php and paste in the same folder; rename it to helloworld.php and open it.
Then look for the following line of code:
$_['entry_code'] = 'Google Talk Code:

Goto
 <a href="http://www.google.com/talk/service/badge/New"
 target="_blank">
 <u>Create a Google Talk chatback badge</u>
 and copy & paste the generated code into the
 text box.
';

Getting Started with OpenCart Modules

[8]

5.	 And replace with following code:
$_['entry_code'] = 'Hello World Content';

6.	 Then again find google_talk and replace all with helloworld.
7.	 Then, save the file.
8.	 Navigate to admin/view/template/module/ and copy the google_talk.tpl

file and paste it in the same folder and rename it to helloworld.tpl; open it
and look for google_talk and replace it with helloworld and save it.

Changes made in the catalog folder
Following are the steps to make changes in the catalog folder:

1.	 Go to catalog/controller/module/ and copy the google_talk.php file
and paste it in the same folder and rename it to helloworld.php; open it and
look for the following line of code:
class ControllerModuleGoogleTalk extends Controller {

Change the class name to :

class ControllerModuleHelloworld extends Controller {

2.	 Now look for google_talk and replace all with helloworld and save it.
3.	 Navigate to catalog/language/english/module/ and copy the google_

talk.php file and paste it in the same folder and rename it to helloworld.
php; open it and look for Live Chat and replace it with Hello World and
save it.

4.	 Navigate to catalog/view/theme/default/template/module/ and copy
the google_talk.tpl file and paste it in the same folder and rename it to
helloworld.tpl.

With the preceding file and code changes complete, our Hello World module is
ready to be installed. Now log in to the admin section and navigate to Extensions
| Modules, then look for Hello World and click on [install], then click on [Edit] of
the Hello World module. Then type the content that you would like to show on the
frontend in the Hello World Content field. Now click on the Add Module button
and adjust the settings as per your requirements and click on Save. With the settings
as per the following image, the module will be shown in the User Account links
box (Login, My Account, Edit Account, and so on) for the customer to access as per
the layout and it will be shown in the right column, as the status is enabled. The
following screenshot shows the settings for the Hello World module:

Chapter 1

[9]

Now navigate to the frontend of the site and click on the My Account link on
the home page; you will see the Hello World module as shown in the following
screenshot:

Following are the list of files that you need to upload to your live server:

•	 admin/language/english/module/helloworld.php

•	 admin/controller/module/helloworld.php

•	 admin/view/template/module/helloworld.tpl

•	 catalog/controller/module/helloworld.php

•	 catalog/language/english/module/helloworld.php

•	 catalog/view/theme/default/template/module/helloworld.tpl

Getting Started with OpenCart Modules

[10]

By uploading the files, installing the module, and providing the settings, your Hello
World module is ready to use.

You can change the Hello World text at catalog/language/english/module/
helloworld.php to your desired text like Welcome to our Store and type the
welcome message at the Hello World Content while setting the module and
showing the welcome message at the frontend.

Installing, configuring, and uninstalling
a module
There are many default modules in OpenCart. How modules get installed and which
are the database tables that hold the settings of the module are really big questions
for the developer.

Installing a module
Navigate to admin | Extensions | Modules, where you will find the list of
modules. Click on [Install] and the module gets installed, as shown in the following
screenshot:

When you click on the [Install] module, the extension/module controller's install
function is called. Now open admin/controller/extension/module.php, you will
see the public function install(),which performs the permission check. If you get
the Permission Denied! message, as shown in the following screenshot, you have to
provide the access permission from admin | User | User Group and edit the user and
check or tick mark the module/extension, so you will be able to edit the modules.

Chapter 1

[11]

If you are provided the access, it loads the admin/model/setting/extension.php
function install().

public function install($type, $code) {
 $this->db->query("INSERT INTO " . DB_PREFIX ."extension SET `type`
= '" . $this->db->escape($type) . "', `code` = '" . $this->db-
>escape($code) . "'");
}

This means that data is inserted into the extension table of the database with
type=module, and code=helloworld, in case of our Hello World module.

Configuring the module
After clicking on [Install] of the module, [Edit] [Uninstall] gets activated; after
clicking on [Edit], you will see the configuration section for the module. As per the
Hello World module, the following screenshot shows the configuration section on
clicking on [Edit]:

The Hello World Content field is saved in the setting table (oc_setting or as per
the prefixes used during installation of OpenCart) of the database as per the name
of the input box with group column of "helloworld". For this module, navigate to
the file admin/view/template/module/helloworld.tpl, where you will find the
following code:

<textarea name="helloworld_code" cols="40" rows="5"><?php echo
$helloworld_code; ?></textarea>

Getting Started with OpenCart Modules

[12]

Thus, the message or text you typed in the text area is passed to the
admin/controller/module/helloworld.php controller and the following
lines of code is processed:

if (($this->request->server['REQUEST_METHOD'] == 'POST') && $this-
>validate()) {
 $this->model_setting_setting->editSetting('helloworld',
 $this->request->post);
 $this->session->data['success'] = $this->
 language->get('text_success');
 $this->redirect($this->url->link('extension/module',
 'token=' . $this->session->data['token'], 'SSL'));
}

It checks if the form is submitted through the POST method and checks whether
the Hello World Content field is empty or not with the validate function. If the
content is not empty and the form is submitted through the POST method, it calls the
editSetting function which is in admin/model/setting/setting.php.

public function editSetting($group, $data, $store_id = 0) {
 $this->db->query("DELETE FROM " . DB_PREFIX . "setting WHERE
 store_id = '" . (int)$store_id . "' AND `group` = '" . $this-
 >db->escape($group) . "'");
 foreach ($data as $key => $value) {
 if (!is_array($value)) {
 $this->db->query("INSERT INTO " . DB_PREFIX . "setting SET
 store_id = '" . (int)$store_id . "', `group` = '" . $this-
 >db->escape($group) . "', `key` = '" . $this->db-
 >escape($key) . "', `value` = '" . $this->db-
 >escape($value) . "'");
 } else {
 $this->db->query("INSERT INTO " . DB_PREFIX . "setting SET
 store_id = '" . (int)$store_id . "', `group` = '" .
 $this->db->escape($group) . "', `key` = '" . $this->
 db->escape($key) . "', `value` = '" . $this->
 db->escape(serialize($value)) . "', serialized =
 '1'");
 }
 }
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com . If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[13]

As given at the controller, $group=helloworld, $data is the $_POST, and $store_id
is 0. First it deletes all the Hello World settings and then starts to insert the new
values. Following are the rows inserted in the setting table of the database:

If the value of the input field of the form is in array, the value is saved with
serialized. Thus serialized becomes 1, or else the value of serialized is 0.

The serialize($value), serialize function of PHP generates a storable
representation of a value for an array.

http://php.net/manual/en/function.serialize.php

Layouts for the module
OpenCart has default page layouts that are based on the route of the page. Some of the
layouts can be found at admin | System | Design | Layouts, and they are as follows:

•	 Account
•	 Affiliate
•	 Category
•	 Checkout
•	 Contact
•	 Default
•	 Home
•	 Information
•	 Manufacturer
•	 Product
•	 Sitemap

http://php.net/manual/en/function.serialize.php
http://php.net/manual/en/function.serialize.php

Getting Started with OpenCart Modules

[14]

Now edit one of them, let's consider Account, as shown in the following screenshot:

The value of Route is account; this means that the module will be seen where
the route value contains account. If your URL is http://example.com/index.
php?route=account/login, the module is shown as route=account. If you want to
show the module in the account section, you have to change the layout to Account.

If you like to show the module in affiliate section, you have to choose the Affiliate
layout as the route of Affiliate, that is, route=affiliate in the URL.

Similarly, for other layouts, check the route at admin | System | Setting | Design
| Layouts | Edit, see the route, and check the URL route; you will find where the
module will show on choosing the layout name.

Positions for the module
There are four positions for modules. They are as follows:

•	 Column Left
•	 Column Right
•	 Content Top
•	 Content Bottom

The following table shows the available positions for modules in the frontend.

Header

Content Left Content Top Content Right

Main Content
Content bottom

Footer

Choose as per your need of module position.

Chapter 1

[15]

Status of the module
Status shows whether the module is enabled or disabled. If enabled, it is shown at
the frontend, else it is not.

Sort order of the modules
If there is more than one module in any of the positions, sort order plays its role.
Let us suppose two modules, Hello World and Account, are positioned to the right
column of layout Account, and you like to show Hello World first, and then below
it, the Account module, you have to insert Sort order 1 for Hello World and Sort
order 2 for Account. If you do not insert sort order, it shows at the top. You will then
be able to see the modules in the right column, as shown in the following screenshot:

Show same module in different layouts
We can easily show the same module in a different layout. To do this, click on the
Add Module button and another row of the table is added; select the appropriate
layout, position, status, and the sort order, then click on the Save button. You will be
able to see the module in the respective layout. When you click on the Add Module
button, the next row is added, as shown in the following screenshot:

Getting Started with OpenCart Modules

[16]

Effects of clicking on the Add Module button
The Add Module button shows another row for the module setting. Open admin/
catalog/view/template/helloworld.tpl and you will see the following code,
which is for the Add Module button:

<?php echo
 $button_add_module; ?>

On clicking the Add Module link, the addModule function is called; the addModule
function adds a row just below the previous row.

Uninstalling the module
Navigate to admin | Extensions | Modules, and you will find the list of modules.
Just click on [Uninstall], the module gets uninstalled and all settings get deleted.
Let's see how it is done. Open admin/controller/extension/module.php, you will
see the public function uninstall(),which performs the permission check and if
there is permission access, it loads the model setting/extension uninstall function.

File structure – admin and frontend
When someone uses the module, it is reliable to have the admin section so that the
user can handle the module functionality as well as position, layout, status, and sort
order by which users can show the module wherever they like.

Creating the language files for the admin module in
OpenCart
Language files are also named with MODULENAME.php. For example, let's say we
want to create a file containing hello world messages or text; we have to create
helloworld.php. Language files use "constant=value" configuration. The constant
name is used in the code; it never changes, only the value for that language changes.
If English language is active, it retrieves the constant from the English language
folder's file; if another language is active, it retrieves from the other language folder's
file. For example, if English language is active, the constant is taken from the English
language folder's file.

$_['text_review'] = 'Product Review';

If Spanish language is active, the constant is taken from the Spanish language
folder's file.

$_['text_review'] = 'De Revisión de Producto';

Chapter 1

[17]

If German language is active, the constant is taken from the German language
folder's file.

$_['text_review'] = 'ProduktBewertung';

A similar process is followed for the other languages installed.

Within the file, we will assign each line of text to a variable as $_['variablename'].
The same variable name will be used in the controller to access the text or messages.
For example, in the following code:

$this->data['heading_title'] = $this->language
 ->get('heading_title');

Now on, we will use the heading_title controller to access the "Hello World" text.

You can see the following code at admin/language/english/module/helloworld.
php.

<?php
$_['heading_title'] = 'Hello World';
$_['text_module'] = 'Modules';
$_['text_success'] = 'Success: You have modified module
 Hello World!';
$_['text_content_top'] = 'Content Top';
$_['text_content_bottom'] = 'Content Bottom';
$_['text_column_left'] = 'Column Left';
$_['text_column_right'] = 'Column Right';
$_['entry_code'] = 'Hello World Content';
$_['entry_layout'] = 'Layout:';
$_['entry_position'] = 'Position:';
$_['entry_status'] = 'Status:';
$_['entry_sort_order'] = 'Sort Order:';
$_['error_permission'] = 'Warning: You do not have permission
 to modify module Hello World!';
$_['helloworld_content'] = Hello World Content';
?>

Creating the controller in the admin section of the
OpenCart module
Controller is the core file where all the logic and magic take place. This is also where
the variables for values and language are set and passed to the view variables for
display. A Controller in OpenCart is simply a class file that is named in a way that
can be associated with a URL.

Getting Started with OpenCart Modules

[18]

Consider this URL: http://example.com/index.php?route=module/helloworld.

In the above example, OpenCart would attempt to find a controller file helloworld.
php in the module folder with class ControllerModuleHelloworld.

We can see the code at admin/controller/module/helloworld.php whose
functionalities are described as follows:

In OpenCart, controller class names must start with the controller and the
folder on which the module is located and the filename without extension.
For example, in the Hello World module, the class name for the controller is
ControllerModuleHelloworld as it is inside the module folder and the filename
is helloworld.php. Also, always make sure your controller extends the parent
controller class.

class ControllerModuleHelloworld extends Controller {

Whenever the controller is called, the index function (public function index()) is
always loaded by default.

$this->language->load('module/helloworld');

The preceding line of code loads the language file variables of helloworld.php
which is in the module folder at admin/language/*/module/helloworld.php
(* represents the language folder) and now you are able to get the text or messages
with reference to variables like $this->language->get('heading_title').
This means the Hello World text is ready to transfer to the template files.

$this->document->setTitle($this->language->get('heading_title'));

The preceding line of code sets the title of the document Hello World.

The $this->load->model('setting/setting') variable loads the setting.php
file of the setting folder which is in the model folder. As explained previously, it
loads admin/model/setting/setting.php. Your module can load any model file in
its controller file using the following code, if they are in the same admin or catalog
folder as the controller. You will need to specify the path to the file you want to
load from the admin folder within the parentheses. The preceding code will load the
settings class so we have access to the functions within the ModelSettingSetting
class in our model's controller file. Use the following format in your code to call a
function from a loaded model file:

$this->model_setting_setting->editSetting('helloworld',
 $this->request->post);

if (($this->request->server['REQUEST_METHOD'] == 'POST') &&
 $this->validate()) {

Chapter 1

[19]

$this->model_setting_setting->editSetting('helloworld',
 $this->request->post);
$this->session->data['success'] = $this->
 language->get('text_success');
$this->redirect($this->url->link('extension/module',
 'token=' . $this->session->data['token'], 'SSL'));
 }

When a form is saved in the module section, the preceding lines of code, which are at
admin/controller/module/helloworld.php run. If the code is submitted through
the POST method and validates function return true, all the settings are saved to
the database at the setting table and a success message is assigned to the success
variable and is redirected to the list of the module page.

protected function validate() {
 if (!$this->user->hasPermission('modify', 'module/helloworld'))
 {
 $this->error['warning'] = $this->language
 ->get('error_permission');
 }
 if (!$this->request->post['helloworld_code']) {
 $this->error['code'] = $this->language->get('error_code');
 }
 if (!$this->error) {
 return true;
 } else {
 return false;
 }
}

When a form is submitted, validation is checked for whether permission is provided
or not. It is checked whether the Hello World Content consists of the text or not.
If no access is provided or no content is entered, error is returned true, by which
it shows Code Required or Permission Denied! and alerts the user to provide the
access or insert the content.

$this->data['heading_title'] = $this->language
 ->get('heading_title');
$this->data['text_enabled'] = $this->language
 ->get('text_enabled');

Getting Started with OpenCart Modules

[20]

The $this->language->get('heading_title') variable gets the value of the
$_['heading_title'] variable from the language file helloworld.php, which
is "Hello World" and is assigned to $this->data['heading_title']. Likewise,
for $this->language->get('text_enabled'), "Enabled" is assigned to $this-
>data['text_enabled'] and the same for the other files.

 if (isset($this->error['warning'])) {
 $this->data['error_warning'] = $this->error['warning'];
 } else {
 $this->data['error_warning'] = '';
 }

The Hello World module checks for access permission and gives a warning if the
user has no access to the module.

 if (isset($this->error['code'])) {
 $this->data['error_code'] = $this->error['code'];
 } else {
 $this->data['error_code'] = '';
 }

If no content is inserted in the Hello World Content field and the user tries to save the
module, it validates whether the content is inserted or not; if content is not inserted, an
error is activated by which it will show the error code as "Code Required".

$this->data['breadcrumbs'] = array();
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_home'),
 'href' => $this->url->link('common/home', 'token=' .
 $this->session->data['token'], 'SSL'),
 'separator' => false
);
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_module'),
 'href' => $this->url->link('extension/module', 'token=' .
 $this->session->data['token'], 'SSL'),
 'separator' =>' :: '
);
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('heading_title'),
 'href' => $this->url->link('module/helloworld', 'token=' .
 $this->session->data['token'], 'SSL'),
 'separator' =>' :: '
);

Chapter 1

[21]

Breadcrumbs are defined in an array, and contain elements such as text, href, and
separator. Text elements hold the word to show in the template file, href holds the
link for the word, and separator holds what to use to separate between words. This is
shown in the preceding lines of code.

 'text' => $this->language->get('text_home'),

The preceding line of code holds the "Home" word as per the language file.

 'href' => $this->url->link('common/home', 'token=' .
 $this->session->data['token'], 'SSL'),

The preceding line of code holds the link to the "Home" word.

 'separator' => false

The preceding line of code holds the separator between the breadcrumbs; if no
separator is needed, false is assigned.

$this->data['action'] = $this->url->link('module/helloworld',
 'token=' . $this->session->data['token'], 'SSL');

The preceding line of code will create a link and store it into the action variable.
If we have to create the link in the admin area, we have to use it as explained
previously. A token is used to preserve the admin user state.

$this->data['modules'] = array();
$this->data['modules'] = $this->config->get('helloworld_module');

An empty array is defined and we assign $this->data['modules'] with all the
settings of helloworld_module.

$this->load->model('design/layout');

It loads the layout.php file of the design folder which is in the model folder. As
explained previously, it loads admin/model/design/layout.php. The preceding
code will load the layout class, so we have access to the functions within the
ModelDesignLayout class in our module's controller file.

$this->data['layouts'] = $this->model_design_layout->getLayouts();

The underscores (model_design_layout) refer to the file designations for model/
design/layout.php. The layouts variable now holds all the layouts that are
created at System | Design | Layout at the admin sections.

$this->template = 'module/helloworld.tpl';
$this->children = array('common/header','common/footer');

Getting Started with OpenCart Modules

[22]

In the controller, you will need to load your module's template file in view. To do so,
set $this->template to $this->template = 'module/helloworld.tpl', and it
loads admin/view/template/module/helloworld.tpl.

$this->response->setOutput($this->render());

The $this->response->setOutput() variable sends data to the browser whether
it's HTML or JSON and $this->render constructs the output HTML from the
templates/data.

Creating the template file at admin in the OpenCart
module
This refers to the template or TPL files. All variables that are passed from the controller
to the view can be used for displaying the output of calculations or functionality.

Open the admin/view/template/module/helloworld.tpl file; we are describing
the code taking some snippets only.

<?php echo $header; ?>
<?php echo $footer; ?>

The $header and $footer variables are passed from the controller as the
template's children.

$this->children = array('common/header','common/footer');

With this, the content of the header and footer are shown on the module section.

Breadcrumbs section for the module
For keeping track of navigation, breadcrumbs are used; in the template file,
breadcrumbs are shown by the following lines of code:

<div class="breadcrumb">
<?phpforeach ($breadcrumbs as $breadcrumb) {
 ?>
 <?php echo $breadcrumb['separator']; ?><a href="<?php echo
 $breadcrumb['href']; ?>"><?php echo $breadcrumb['text'];
 ?>
<?php } ?>
</div>

Chapter 1

[23]

The $breadcrumbs array has been passed by the controller files. The $breadcrumbs
array consists of the separator, URL link, and the text to show. All elements of the
$breadcrumbs array are managed in the controller.

<?php if ($error_warning) {
 ?>
 <div class="warning"><?php echo $error_warning; ?></div>
<?php } ?>

A warning will show up if you have no permission to access or edit the module. As
for the Hello World module, it checks for permission and shows a warning if the
user has no access to the module. The following screenshot shows the Breadcrumbs,
Header image and Title, and Header save and cancel button:

The following line of code shows the image icon near the heading title:

<h1><imgsrc="view/image/module.png" alt="" /><?php echo
 $heading_title; ?></h1>

The following line of code shows the heading title that is passed from the controller:

$this->data['heading_title'] = $this->language
 ->get('heading_title');

The following lines of code show the buttons to save and cancel:

<div class="buttons">
 <?php echo
 $button_save; ?>
 <a href="<?php echo $cancel; ?>" class="button"><?php echo
 $button_cancel; ?>

</div>

On clicking the Save button, the form with ID is submitted; on clicking the Cancel
button, it calls the extension/module controller, which means it is redirected to the
list of modules.

<form action="<?php echo $action; ?>"
 method="post"enctype="multipart/form-data" id="form">

Getting Started with OpenCart Modules

[24]

When the form code is initiated, it has id=form, which is used in the Save button to
submit the form. When we click on the Save button, an action to the module / Hello
World controller processes the submitted data.

The * shows the asterisk (*) in red color by the
style class required.

<textarea name="helloworld_code" cols="40" rows="5"><?php echo
 $helloworld_code; ?></textarea>
<?php if ($error_code) {
 ?>
 <?php echo $error_code; ?>
<?php } ?>

This is the text area field which holds some data; if this text area is submitted empty,
it shows as an error.

<tr>
 <td class="left"><?php echo $entry_layout; ?></td>
 <td class="left"><?php echo $entry_position; ?></td>
 <td class="left"><?php echo $entry_status; ?></td>
 <td class="right"><?php echo $entry_sort_order; ?></td>
 <td></td>
</tr>

The table heading is shown by the preceding code and it will look as shown in the
following screenshot:

In the following code snippet, the $module_row variable is defined. It is assigned to
zero and is increased with the foreach loop, so it is the count of the module rows
that increases on clicking on the Add Module button.

<?php $module_row = 0; ?>
<?phpforeach ($modules as $module) { ?>

Chapter 1

[25]

The $modules array carries the setting of the module; if it is empty, only the Add
Module button is shown.

<select name="helloworld_module[<?php echo $module_row;
 ?>][layout_id]">
 <?php foreach ($layouts as $layout) {
 ?>
 <?php if ($layout['layout_id'] == $module['layout_id']) {
 ?>
 <option value="<?php echo $layout['layout_id']; ?>"
 selected="selected"><?php echo $layout['name'];
 ?></option>
 <?php } else { ?>
 <option value="<?php echo $layout['layout_id']; ?>"><?php echo
 $layout['name']; ?></option>
 <?php } ?>
 <?php } ?>
</select>

The preceding code shows the Layout option. If the layout id matches the module
layout id, which has been already saved, the selected layout is shown among other
layouts, else layouts are shown as default. The layout arrays have been passed from
the controller. Similarly, for the position, select fieldname as helloworld_module
with its second element as position.

<select name="helloworld_module[<?php echo $module_row;
 ?>][position]">

As we already know, there are four positions described in OpenCart; they are
content top, content bottom, column left, and column right. The position module
code for the content top is as follows:

<?php if ($module['position'] == 'content_top') {
 ?>
 <option value="content_top" selected="selected"><?php echo
 $text_content_top; ?></option>
<?php } else {
 ?>
 <option value="content_top"><?php echo $text_content_top;
 ?></option>
<?php } ?>

Getting Started with OpenCart Modules

[26]

If module position is already defined and is equal to content_top, content top is
selected, else others are selected as default. It works in a similar way for the content
bottom, column left, and column right.

<select name="helloworld_module[<?php echo $module_row;
 ?>][status]">
 <?php if ($module['status']) {
 ?>
 <option value="1" selected="selected"><?php echo
 $text_enabled; ?></option>
 <option value="0"><?php echo $text_disabled; ?></option>
 <?php } else { ?>
 <option value="1"><?php echo $text_enabled; ?></option>
 <option value="0" selected="selected"><?php echo
 $text_disabled; ?></option>
 <?php } ?>
</select>

The preceding code is to show the module status; if module is enabled, option
value is equal to 1, else it is 0. If module status is defined or equal to 1, it shows that
the module is already defined, so enabled is selected. If it is not defined, disabled is
selected.

<input type="text" name="helloworld_module[<?php echo $module_row;
 ?>][sort_order]" value="<?php echo $module['sort_order']; ?>"
 size="3" />

The preceding code holds the sort order of the module.

<a onclick="$('#module-row<?php echo $module_row; ?>').remove();"
 class="button"><?php echo $button_remove; ?>

The preceding code line removes the rows when we click on the Remove button.

<?php echo
 $button_add_module; ?>

On clicking on the Add Module link, function addModule is called, which adds a
row just below the previous row.

function addModule() {}

Chapter 1

[27]

The preceding function adds the rows for the modules setting. We can add as many
modules as we like, just keep on clicking on the Add Module button. The following
screenshot shows multiple rows for setting after clicking on the Add Module button:

Creating the language file for catalog (frontend)
module in OpenCart
You can create a language file in a similar way as we did in the admin section. For
the frontend, your language file will be located at catalog/language/english/
module/MODULENAME.php. The filename should be the same as the module name. As
per the Hello World module, the language file name is helloworld.php, it is created
at catalog/language/english/module/ and consists only of the following code:

<?php
 // Heading
 $_['heading_title'] = 'Hello World';
?>

The Hello World text is assigned to heading_title; with the same heading_title,
it is accessible to the controller.

Creating the controller file for catalog (frontend)
module in OpenCart
A controller file of a module for the frontend is found at catalog/controller/
module/MODULENAME.php; as per the Hello World module, we can see the
helloworld.php files at catalog/controller/module. Since we named the file
helloworld.php and put it at module/folder, the controller classname will be
ControllerModuleHelloworld.

class ControllerModuleHelloworld extends Controller {

Getting Started with OpenCart Modules

[28]

Also, always make sure your controller extends the parent controller class so that it
can inherit all its functions.

protected function index() {

The index function is always loaded by default if the second segment of the URL
is empty. We can load the module controller at http://example.com/index.
php?route=module/helloworld/index or http://example.com/index.
php?route=module/helloworld.

Here the second segment of the URI is index; if you have created other functions, we
can call the function of the module by passing it into the second segment of the URL.

$this->language->load('module/helloworld');

Loading of language files is done with the preceding line of code. According to the
previous line, the helloworld.php file at catalog/language/english/module/ is
loaded if English language is active or it will load as per the language activated. For
example, if Spanish language is active, it loads from catalog/language/spanish/
module/.

$this->data['heading_title'] = $this->language->get('heading_title');

The preceding line fetches the text "Hello World" with $this->language-
>get('heading_title'); and assigns it to the heading_title variable of the data
array. The $heading_title file will show "Hello World" in the template files.

if (isset($this->request->server['HTTPS']) && (($this->request
 ->server['HTTPS'] == 'on') || ($this->request->server['HTTPS']
 == '1'))) {
 $this->data['code'] = str_replace('http', 'https',
 html_entity_decode($this->config->get('helloworld_code')));
 } else {
 $this->data['code'] = html_entity_decode($this->config
 ->get('helloworld_code'));
 }

The first line of code checks whether SSL is active. If SSL is active, the link's http of
$this->config->get('helloworld_code') is replaced with https.

Chapter 1

[29]

You will be able to get the value of the setting table in a database by passing the
key. For example, consider the setting table of a database that consists of the
following rows, as shown in the following screenshot:

If you want to show Dressing Shop, you can get it easily wherever you like in the
controller, model, or template files. You just have to type the following line of code:

echo $this->config->get('config_name');

But if serialized is equal to 1, it means that the value is stored in an array.

if (file_exists(DIR_TEMPLATE . $this->config
 ->get('config_template') . '/template/module/helloworld.tpl')) {
 $this->template = $this->config->get('config_template') .
 '/template/module/helloworld.tpl';
 } else {
 $this->template = 'default/template/module/helloworld.tpl';
 }
 $this->render();

You can get an active template name from $this->config->get('config_
template'); the preceding lines of code check whether the helloworld.tpl file is
on the active template or not. If the file is found in the active template, it uses it, or
it will use one from the default template. It will be better if we keep the files on the
default theme.

Creating the template file for catalog (frontend)
module in OpenCart
You can find the template file at catalog/view/theme/<template name>/module;
as for the Hello World module, the file name is helloworld.tpl. OpenCart frontend
template files have deeper folder structures than the admin ones because admin
sections can have only one template. For the frontend, on the other hand, there can
be any number of templates; among them, one is selected from the admin | system
| setting | edit | the store and at the store tab choose the best template under the
Template field.

Getting Started with OpenCart Modules

[30]

A folder named <template name> is created at catalog/view/theme. One of the
basic rules in OpenCart is never to edit the default theme template file because if
OpenCart does not find certain template files on your theme <template name>
folder, it will find them on the default theme. While upgrading, the changes made
on your custom theme will also get overridden. If template files are not found on the
default theme, it shows the following error:

Notice: Error: Could not load template catalog/view/theme/customtheme/template/
module/helloworld.tpl! in system\engine\controller.php

Here, the theme folder's name is customtheme.

If you see this kind of error, it means that helloworld.tpl is missing on the
customtheme and default theme folders. So you need to create the helloworld.
tpl file at catalog/view/theme/customtheme/template/module/ or catalog/
view/theme/default/template/module/. Since the helloworld.tpl file is not the
default file of OpenCart, we can place it either on customtheme or in default theme.

If you require any changes on the default theme template files, you have to copy the
files and folders to the customtheme folder and make changes on the customtheme
folder's files, so upgrading it will help in preserving your changes. The following are
the code on catalog/view/theme/default/module/helloworld.tpl.

<div class="box">
 <div class="box-heading"><?php echo $heading_title; ?></div>
 <div class="box-content" style="text-align: center;"><?php echo
 $code; ?></div>
</div>

The $heading_title file holds the text "Hello World" and $code holds the message
or text that is inserted into the Hello World module at the backend.

Summary
In this chapter, we duplicated the Google_talk module to create the Hello World
module. Hello World is created, installed, configured, and uninstalled. On
configuration, we inserted some data and showed the same at the frontend.

We found out how code works in the Hello World module and its file and folder
structure. We also described all the code that we used in the Hello World module's
files. Taking reference of Hello World module, we should be able to go through other
modules and become familiar with the modules of OpenCart.

Describing The Code of
Extensions

In this chapter we will cover most of the code that is used in OpenCart to perform
different functions, which will be helpful in creating modules. We have used
OpenCart Version 1.5.5.1.

Global library methods
OpenCart has many predefined methods that can be called anywhere, such as in
the controller folder or in the model, and in the view template files. You can find
system level library files at system/library/. The following shows the different
methods, how they can be written, and what their functions are:

•	 Affiliate: You can find most of the affiliate code under the affiliate section,
and check the files at catalog/controller/affiliate/ and likewise at
catalog/model/affiliate/. The following are the list of methods we can
use for the affiliate library:

°° $this->affiliate->login($email, $password);

This command ensures that the e-mail and password are passed to
the method. If the username (e-mail) and password match among
the affiliates, it logs into the affiliate section. You can find this code
at catalog/controller/affiliate/login.php on the validate
function.

Describing The Code of Extensions

[32]

°° $this->affiliate->logout();

The affiliate is logged out. It means the affiliate ID will be cleared and
its session will be destroyed, as well as the affiliate's first name, last
name, e-mail, telephone number, and fax number are given empty
values.

°° $this->affiliate->isLogged();

It checks whether the affiliate is logged in. If you want to show some
message to the logged-in affiliate only, can you do so, as follows:

if($this->affiliate->isLogged()){

 echo "Welcome to the Affiliate Section";
}else {

 echo "You are not at Affiliate Section";
}

°° $this->affiliate->getId();

When we echo the preceding line, it will show the active affiliate's ID.

°° $this->affiliate->getFirstName();

When we echo the preceding line, it will show the active affiliate's
first name.

°° $this->affiliate->getLastName();

When we echo the preceding line, it will show the active affiliate's
last name.

°° $this->affiliate->getEmail();

When we echo the preceding line, it will show the active affiliate's
e-mail.

°° $this->affiliate->getTelephone();

When we echo the preceding line, it will show the active affiliate's
telephone number.

°° $this->affiliate->getFax();

When we echo the preceding line, it will show the active affiliate's fax
number.

°° $this->affiliate->getCode();

When we echo the preceding line, it will show the active affiliate's
tracking code, which is used to track referrals.

Chapter 2

[33]

•	 Cache: It consists of the cache files and is located under system/cache.
°° $this->cache->get($key);

You can retrieve the cache file as per the key value passed with
this method.
In the following example, if the cache file of country is found in
the system/cache folder, it directly takes the data from there , else
performs database queries to retrieve the country:

$country_data = $this->cache->get('country');
if (!$country_data) {
 $query = $this->db->query(
 "SELECT * FROM " . DB_PREFIX ."country
 ORDER BY name ASC");
 $country_data = $query->rows;
 $this->cache->set('country', $country_data);
}
return $country_data;

°° $this->cache->set($key, $value);

It helps in creating the cache files. Considering the preceding
example about the country cache file, if the cache file is not found in
the system/cache folder, then queries to the database are performed
and the retrieved data is set with the key of the country.

°° $this->cache->delete($key);

It deletes the file in the cache folder as per the key value provided.
For example: $this->cache->delete('country'); deletes the
country cache file.

•	 Captcha: Captcha functions are not automatically instantiated; you have to
access them as follows:

°° Write the captcha function under controller as follows:
public function captcha() {
 $this->load->library('captcha');
 $captcha = new Captcha();
 $this->session->data['captcha'] = $captcha->getCode();
 $captcha->showImage();
}

Describing The Code of Extensions

[34]

°° When the template file is called, the Captcha image is shown.

"controller/captcha" in the preceding code line is the path where
you make the captcha function. For example, if you write the function
in the information/information.php file, it will be information/
information.

•	 Cart: System-instantiated cart objects are available for use. They are as
follows:

°° $this->cart->getProducts();

It gives the list of all products in the array of the cart.

°° $this->cart->add($product_id, $qty = 1,
 $option = array());

It adds products to the cart; just pass the product ID, your desired
quantity, and your desired options.

°° $this->cart->update($key, $qty);

If you need to update a product in the cart, this method is used where
$key is the product ID and $qty is the quantity you added.

°° $this->cart->remove($key);

If you want to remove a product from the cart, this method is used
where $key is the product ID that you wish to remove.

°° $this->cart->clear();

If you wish to remove all the products at once, this method is used.

°° $this->cart->getWeight();

It gives the sum of the weight of all products in the cart which
requires shipping.

°° $this->cart->getSubTotal();

It gives the subtotal of all products which are in the cart before being
taxed.

°° $this->cart->getTaxes();

It gives the array of total taxes applied to the cart.

°° $this->cart->getTotal();

It gives the total of all products in the cart after being taxed.

Chapter 2

[35]

°° $this->cart->countProducts();

It gives the total number of products in the cart.

°° $this->cart->hasProduct();

It checks whether the cart has products or not.

°° $this->cart->hasStock();

It checks for the stock of each product in the cart. If it has stock, it
returns true; else false (means no stock).

°° $this->cart->hasShipping();

It checks whether each product in the cart has shipping or not. If a
product has shipping, true is returned; else false.

°° $this->cart->hasDownload();

It checks whether each product in the cart is downloadable or not. If a
product is downloadable, true is returned; else false.

•	 Config: The config values are loaded from the Settings table of the database.
°° $this->config->set($key, $value);

It is used to override the $key value of the "Settings" table value of
the database. It does not save the value to the database.
For example, if you want to show a different store name than the
set value in the database, we add the following code in the
controller folder:
$this->config->set('config_name','New Store Name');

Normally, when we echo $this->config->get('config_name');
we get the store name; however since the set value is changed now,
we will get the store name as "New Store Name".

°° $this->config->get($key);

It returns the set value as per the $key value passed. If there is no key
value, it returns null. For example, when you echo $this->config-
>get('config_name');, you will get the store name.

Describing The Code of Extensions

[36]

•	 Currency: It consists of the methods that can be applied to currencies:
°° $this->currency->set($currency);

It sets or overrides the currency code to be used in the session as
well as sets the cookie for the currency.

°° $this->currency->format($number, $currency='',
 $value='', $format=true)

It formats the number to the currency passed. For example, if you
have the number 100 and currency USD, it will be formatted to
$100.00. Here $number is the price value, $currency is the currency
code, $value is the conversion rate between the currencies, and
$format is to format the currencies. For example
$this->currency->format(50, 'USD', 1, false);

gives 50.00 as the output and
$this->currency->format(50, USD, 1, true);

gives $50.00 as the output.
By navigating to Admin | System | Localization | Currencies, we
can find the settings where we insert the currency, the currency sign,
the position of the sign, the decimal points to show, and so on.

°° $this->currency->convert($value, $from, $to);

If currency is set from Admin| System| Localization| Currencies, the
value passed is converted from a certain chosen currency to another.

°° $this->currency->getId($currency='');

If you need the ID of the currency, we have to use the getId()
method. For example, by using $this->currency->getId('USD');,
you will get the ID of the US dollar. USD is the code for the currency
inserted.
If no currency code is defined, it returns zero.

°° $this->currency->getSymbolLeft(($currency='');

Some currencies' symbols appear to the left of the value; for example,
$100 in the case of 100 US dollars. We can get the symbol on the left
side of the value with the use of the method. Now, echo $this-
>currency->getSymbolLeft('USD');

Chapter 2

[37]

°° $this->currency->getSymbolRight(($currency='');

Some currencies' symbols appear on the right side of the value, for
example, the Swedish, 100krona. We can get the symbol on the right
side of the value with this method. Now, echo $this->currency-
>getSymbolRight('SEK');

°° $this->currency->getDecimalPlace($currency='');

Navigate to Admin | System | Localization | Currencies |
Insert Button, where there is a Decimal Places field to insert the
currency. The setting is activated as per the activated currency.
If we insert 2 in the input field and then save it after the decimal,
two values are displayed: $100.00. Now, echo $this->currency-
>getDecimalPlace('USD');

°° $this->currency->getCode();

It returns you the ISO code that you inserted at Admin | System |
Localization | Currencies | Insert Button.

°° $this->currency->getValue($currency = '');

It gives the set value of the Value field while inserting the currency. It
is taken as the exchange rate for the specified currency with respect to
the default currency.

°° $this->currency->has($currency);

It checks whether the passed currency exists in the OpenCart
currency list. If it finds the currency, it returns true; else false.

•	 Customer: It consists of the customer data.
°° $this->customer->login($email, $password,

 $override = false);

It logs a customer in. It checks for the customer's username and
password when $override is passed false, else only for current
logged in status and the e-mail. If it finds the correct entry, the
OpenCart wish list entries are retrieved. In addition to this,
customer ID, first name, last name, e-mail, telephone, fax, newsletter
subscription status, customer group ID, and address ID can also be
globally accessed by the customer. It also updates the customer IP
address from where he/she logs in.

Describing The Code of Extensions

[38]

°° $this->customer->logout();

When it is called, it logs out the customer. First of all, it updates the
OpenCart wish list field of the customer table in the database and
destroys the customer's session ID. Then, it assigns a blank value to
the customer object's data such as customer ID, first name, last name,
e-mail, telephone, fax, newsletter, customer group ID, and address ID.

°° $this->customer->isLogged();

It checks whether the customer is logged in or not. If he/she is logged
in, it returns true else false. For instance, consider the following
lines of code:

if($this->customer->isLogged()){
 echo "You are at the logged customer section";
}else{
 echo "You have not logged in yet";
}

°° $this->customer->getId();

When you echo it, it gives you the customer ID of the logged-in
customer.

°° $this->customer->getFirstName();

When we echo this line, we will show the active customer's first
name.

°° $this->customer->getLastName();

When we echo the preceding line, it will show the active customer's
last name.

°° $this->customer->getEmail();

When we echo the preceding line, it will show the active customer's
e-mail address.

°° $this->customer->getTelephone();

When we echo the preceding line, it will show the active customer's
telephone number.

°° $this->customer->getFax();

When we echo the preceding line, it will show the active customer's
fax number.

Chapter 2

[39]

°° $this->customer->getFirstName();

When we echo the preceding line, it will show the active customer's
first name.

°° $this->customer->getNewsletter();

When we echo the preceding line, it will show either 0 or 1, if 1 is
shown, it means the customer is subscribed to the newsletter. If zero
is shown, it means the customer is not subscribed to the newsletter.

°° $this->customer->getCustomerGroupId();

When we echo the preceding line, it will show the active customer's
group ID.

°° $this->customer->getBalance();

When we echo the preceding line, it will show the active customer's
current balance. When you view the "Your Transaction" link after
logging in to the customer section, you will find the total current
balance; the same balance is shown by this code.

°° $this->customer->getRewardPoints();

When we echo the preceding line, it will show the active customer's
total remaining reward points earned.

•	 Database: The db class helps to query the database to perform insert,
select, delete, and update, as well as providing methods to clean the data
by escaping, getting the last inserted ID, and the total count of rows.

°° $this->db->query($sql);

It executes the passedsql statement. For instance, consider the
following lines of code:
$query = $this->db->query("SHOW COLUMNS FROM
 `".DB_PREFIX."product` LIKE 'youtube'");
if(!$query->num_rows){
 $this->db->query("ALTER TABLE `".DB_PREFIX."product`
 ADD `youtube` TEXT NOT NULL");
}

These lines of code are written in the controller file or model files
of OpenCart. The method searches for the YouTube column in the
product table, and if it is not found, it alters the product table by
adding another column named YouTube.

Describing The Code of Extensions

[40]

°° $this->db->escape($value);

It escapes or cleans the data before entering it to the database to avoid
the SQL injection. Developers perform this for security reasons.

°° $this->db->countAffected($sql);

It returns the count of affected rows from the most recent query
execution.

°° $this->db->getLastId($sql);

It returns the ID of the last inserted row from the most recent query
execution.

•	 Document: Document library methods can be called from controller, only
before rendering the document.

°° $this->document->setTitle($title);

This line of code sets the page's title.

°° $this->document->getTitle();

This line of code gets the page's title.

°° $this->document->setDescription($description);

This line of code gets the page's meta description.

°° $this->document->getDescription();

This line of code gets the page's meta description.

°° $this->document->setKeywords($keywords);

This line of code sets the page's keyword meta tag.

°° $this->document->getKeywords();

This line of code gets the page's keyword meta tag.
For the home page of OpenCart, the title and description keywords
are accessed from the settings inserted at System | Settings | Edit
and under the Store tab. And for other pages, title and description
is set as defined to override the default values as per the need in the
controller file.

Chapter 2

[41]

°° $this->document->addLink($href, $rel);

It adds the link at the head section as follows:
$this->document->addLink($this->url->link(
 'product/product', 'product_id=42','canonical');

If we write the preceding line of code in the controller file, we will
see the following code at the head sections:
<link href="http://example.com/index.php?route=
 product/product&product_id=42"rel="canonical" />

A canonical page is the preferred version of a set of pages with highly
similar content.

Why specify a canonical page? It's common for a site to have several
pages listing the same set of products. For example, one page might
display the products sorted in alphabetical order, while other pages
display the same products listed by price or by rating.

Details of a canonical page can be found at the following URL:

http://support.google.com/webmasters/bin/answer.
py?hl=en&answer=139394

°° $this->document->getLinks();

It lists the set links. Mostly, calls are made in the header of
controller.

°° $this->document->addStyle($href, $rel = 'stylesheet',
$media = 'screen');

It adds the extra style sheet needed only in the page. For example,
consider the following lines of code:
$this->document->addStyle('catalog/view/javascript/
 jquery/colorbox/colorbox.css');

The colorbox.css file is needed in the product details page, so it is
called in catalog/controller/product/product.php and the style
sheet is added to the <head> section of the document.

Describing The Code of Extensions

[42]

°° $this->document->getStyles();

It lists the style sheet at the <head> section of the document. Mostly,
calls are made in the header controller.
As with the addStyle method, colorbox.css is added, so a line is
added in the <head> section of the document. The following is the
line we can see on the <head> section of the document.

<link rel="stylesheet"type="text/css"href=
 "catalog/view/javascript/jquery/colorbox/colorbox.css
 "media="screen" />

°° $this->document->addScript($script);

It adds the script files (for example, JavaScript files) needed only in
the page. For example:
$this->document->addScript('catalog/view/javascript/
 jquery/tabs.js');

This adds the tabs.js files wherever the preceding line of code is
added.

°° $this->document->getScripts();

It lists the script files added with the addScript method. Just as the
addScript code in the preceding example, where the tabs.js file is
added, the following line of code is added in the <head> section of
the document:

<script type="text/javascript"src="catalog/view/
 javascript/jquery/tabs.js"></script>

•	 Encryption: You can find the encryption file at system/library/
encryption.php which has the Encryption class and its object name is
encryption. It is used to encrypt and decrypt the values.

°° $this->encryption->encrypt($value);

It encrypts the data based on the key in the admin settings.

°° $this->encryption->decrypt($value);

It decrypts the data based on the key in the admin settings.

Chapter 2

[43]

•	 Language: You can find all the data under catalog/language:
°° $this->language->get($key);

It gets the value of the key from the language file. For example:
$this->language->get('heading_title');

It searches for the value of heading_title in the language file.

°° $this->language->load($filename);

It loads the language file and makes its variable for use.
$this->language->load('catalog/category');

It loads the catalog/language/english/catalog/category.
php file when the English language is active or loads the respective
language's category.php.

•	 Length: You can find the length file at system/library/length.php which
has the Length class and its object name is length. It is used to convert,
format, and get the unit of length.

°° $this->length->convert($value, $from, $to);

The passed value is converted as per the value provided. For
example, consider the following lines of code:
$length = $this->length->convert($this->config->get(
 'ups_length'), $this->config->get(
 'config_length_class_id'), $this->config->get(
 'ups_length_class_id'));

The configured length is converted to the UPS length.

°° $this->length->format($value, $length_class_id,
 $decimal_point = '.', $thousand_point = ',');

The passed value is formatted to the required length format.

°° $this->length->getUnit($length_class_id);

It returns the length's unit, such as cm or inches.

Describing The Code of Extensions

[44]

•	 Log: You can find all the log files stored under system/logs.
°° $this->log->write($message);

It writes the message passed on to the system/logs/error.txt file.
For example:
$this->log->write('This is the error message');

If you write this code and then refresh the URL which calls this file,
the This is the error message message is logged in the error.txt
file.

•	 Mail: You are shown an example directly for mail, which will help you
understand the concept more clearly. With the following lines of code, an
e-mail is sent:
$mail = new Mail();
$mail->setTo($this->request->post['email']);
$mail->setFrom($this->config->get('config_email'));
$mail->setSender($this->config->get('config_name'));
$mail->setSubject(html_entity_decode($subject, ENT_QUOTES,
 'UTF-8'));
$mail->setText(html_entity_decode($message, ENT_QUOTES,
 'UTF-8'));
$mail->send();

The setTo() method sets the receiver to whom the mail is addressed, the
setFrom()method sets the sender's e-mail ID , setSender() sets the name
of the sender, setSubject() sets the subject section of the mail, setText()
sets the text for the message if it's only text (if it is an HTML e-mail, we use
setHtml()), and the send()method sends the mail.

•	 Pagination: The following code snippet is a part of the user listing.
$pagination = new Pagination();
$pagination->total = $user_total;
$pagination->page = $page;
$pagination->limit = $this->config->get(
 'config_admin_limit');
$pagination->text = $this->language->get(
 'text_pagination');
$pagination->url = $this->url->link('user/user', 'token=
 ' . $this->session->data['token'] . $url .'&page={page}',
 'SSL');
$this->data['pagination'] = $pagination->render();

Chapter 2

[45]

total is the total number of users, page is the page number that is available
through the GET value, limit is defined by the setting in the admin, text
shows the numbers and extra messages, and url is to move to other pages.
With this rendering $pagination is available for the template view to show
the page numbers.

•	 Request: Two commonly used methods for a request-response
communication between a client and server are GET and POST. In OpenCart,
these are written as follows:

°° $this->request->get;

°° $this->request->post;

For a selected element, it is respectively written as:

°° $this->request->get['selected'];

°° $this->request->post['selected'];

•	 Response: You can find the response system files at system/library/
response.php, which have a class name of Response and its object name is
response.
$response = new Response();

°° $response->addHeader('Content-Type: text/html;
charset=utf-8');

The addheader()method adds the content type used by the
document.

°° $this->redirect($url);

It redirects the page to the URL specified. $url passed should have
the complete URL.

•	 Session: It stores the active session data:
°° $this->session->getId()

It returns the active session ID.

•	 Tax: System-initiated tax objects are used in OpenCart. They are as follows:
°° $this->tax->setShippingAddress($country_id, $zone_id);

It sets the shipping address with the country ID and zone ID.

Describing The Code of Extensions

[46]

°° $this->tax->setPaymentAddress($country_id, $zone_id);

It sets the payment address with the country ID and zone ID.

°° $this->tax->setStoreAddress($country_id, $zone_id);

It sets the store address with the country ID and zone ID.

°° $this->tax->calculate($value, $tax_class_id,
 $calculate = true);

It calculates the tax, only if $tax_class_id is set and $calculate is
set to true.

•	 URL: It helps in making the full URL. You can find the URL file at system/
library/url.php which has the class name url and its object name is url.

°° $this->url->link($route, $args = '', $connection =
 'NONSSL')

It makes the URL to be passed as the $route variable. If SSL is active,
it makes https://; else http://.

•	 User: You can find most of the user code under the account section, and you
can check the files at catalog/controller/account/. The following are the
list of methods we can use for the user library:

°° $this->user->getId();

When we echo the preceding line, it will show the active user's ID.

°° $this->user->login($username, $password);

When the username and password are passed to the method, and if
they match among the users, it logs in to the administration section.

°° $this->users->logout();

The admin user gets logged out. It means that the user ID will be
cleared, its session will be destroyed, and the user's username and
user ID are assigned empty values.

°° $this->users->isLogged();

It checks if the user is logged in or not.

Chapter 2

[47]

°° $this->users->hasPermission($key, $value);

It checks whether the user has permission or not. For example:
if (!$this->user->hasPermission('modify',
 'catalog/category)) {
$this->error['warning'] = $this->language->get(
'error_permission');
}

The preceding code checks whether the user is provided access to
modify or insert the categories. Permission for users can be provided
by navigating to Admin | System | Users | User Group, where one
can edit or insert a new user and provide the necessary permission to
the user.

°° $this->users->getId();

It returns the active user's ID.

°° $this->users->getUserName();

It returns the active user's username.

•	 Weight: You can find the weight file at system/library/weight.php which
has a class name Weight and its object name is weight and is used to convert,
format, and get the unit of weight.

°° $this->weight->convert($value, $from, $to);

The passed value is converted as per the value provided to the
desired weight. The $value attribute is the weight of the products on
the shopping cart, $from is the weight class needed to be converted,
and $to is the required weight class. You can insert and edit the
weight class by navigating to Admin | System | Weight Class.

°° $this->weight->format($value, $weight_class_id,
 $decimal_point = '.', $thousand_point = ',');

The passed value is formatted to the required weight format.

°° $this->length->getUnit($weight_class_id);

It returns the weight's unit, such as kg, pound, or gram.

Describing The Code of Extensions

[48]

Detailed description of the Featured
module
The Featured module highlights specific products so that they will be helpful in
increasing the sales and lets users know which products are highlighted.

Configuring the Featured module in OpenCart
1.5.5.1
In this section, you will see how to configure the Featured module in OpenCart and
likewise you can configure other modules as per the requirements:

1.	 Log in to the Administrator dashboard, hover over the Extensions tab, and
then click on Modules to see a list of modules. If the Featured module is not
already installed, click on [Install].

2.	 In order to configure a featured product, click on [Edit]. On clicking, the
following screen is seen:

3.	 Now start typing the name of the products, and it will auto complete and
pop-out the list of the name of the products that matches the words with the
product name. Choose the product that you want to show at the featured
products, and it will show in the list.

4.	 Now, to add another product, just type again and choose the right product.
By doing this, make the list of featured products. If you do not want the
products on the featured list, just click on the red minus sign to the right of
the product and the product will be removed from the list.

Chapter 2

[49]

5.	 Now click on the Add Module button and provide the setting for the
appearance of the module. Some setting columns are:

°° Limit: This indicates the number of products to show. Although we
insert many products, only a limited number of products are shown.

°° Image (W x H) and Resize Type: This option is used to insert the
width and height of the image to be shown for the respective layout
and position.

°° Layout: This is the page where the featured products will be shown.
°° Position: This option indicates the place where the module will be

shown.
°° Status: This option is shown at the frontend only if it is enabled.
°° Sort Order: This option indicates the order in which it will be

displayed at the frontend.

6.	 Add as many modules as you wish in different layouts and positions and
then click on Save.

Exploring the code used in the Featured
module
When you click on [Edit] of the installed Featured module, the route module/
featured is called. It means that there are files named featured.php in the module
folder in controller. So let's start with listing the files used by the Featured module:

•	 admin/controller/module/featured.php

•	 admin/language/english/module/featured.php

•	 admin/view/template/module/featured.tpl

•	 catalog/controller/module/featured.php

•	 catalog/language/english/module/featured.php

•	 catalog/view/theme/default/template/module/featured.tpl

Describing The Code of Extensions

[50]

Exploring the featured.php file under the
admin folder
OpenCart's Controller is simply a class file that is named in a way that can be
associated with a URI. The class name should start with the word Controller
followed by the folder name and the file name. For example:

class ControllerModuleFeatured extends Controller {

The preceding code line creates the Controller class of the Featured module. The
class name starts with Controller, followed by the module folder, and then the
featured file. The Featured module's Controller file is named as featured.php
and is in the module folder. As always, it has extended the Controller parent.

If the file name consists of an underscore (_), there will be no problems with respect
to the class name. Everything except the underscore needs to be the same. If your
Controller file is named with an underscore, you have to make the language file
with an underscore as well. Never use an underscore for the class name.

Most of the related code is already described in Chapter 1, Getting Started with
OpenCart Modules, so you have the description of the code and how it works
functionally. By default, the index() method is called unless the second segment is
passed in the URI. While clicking on [Edit], no second segment is passed, so it runs
the index() method, which loads the language files named featured.php in the
module folder in the language section, and sets the title of the document as follows:

$this->document->setTitle($this->language->get('heading_title'));

It then loads the model file, setting.php, and when the module is saved, it validates
the data by checking the permission and checking whether the image size is inserted
or not. Check the validate() method, find out how it returns true when validation
is successful and assigns the error message; it returns false if there is some error,
such as permission denied and/or the image's height and width are not entered.

if (isset($this->request->post['featured_module'])) {
 foreach ($this->request->post['featured_module'] as
 $key => $value) {
 if (!$value['image_width'] || !$value['image_height']) {
 $this->error['image'][$key] = $this->language->get(
 'error_image');
 }
 }
}

The preceding code shows how the error message gets activated if height and/or
width are not inserted on saving the module.

Chapter 2

[51]

$this->data['heading_title'] = $this->language->get(
 'heading_title');
$this->data['text_enabled'] = $this->language->get(
 'text_enabled');
$this->data['text_disabled'] = $this->language->get(
 'text_disabled');

The text and messages to be shown at view are assigned from the language files to
data variables; you can see similar lines of code which perform this function:

if (isset($this->error['image'])) {
 $this->data['error_image'] = $this->error['image'];
} else {
 $this->data['error_image'] = array();
}

If someone forgets to insert the height and/or width of the image, the error messages
to be shown are assigned. The breadcrumbs are defined in an array as follows:

$this->data['breadcrumbs']

And the action links are defined as follows:

$this->data['action'] = $this->url->link('module/featured',
 'token=' . $this->session->data['token'], 'SSL');

The list of products that you have inserted is submitted in $_POST['featured_
product'] and all the product IDs are separated by a comma. Similarly, the
products stored in the database for the Featured module are also saved with their
product IDs separated by commas:

The following code checks whether the product is submitted and then takes the
product IDs from the POST method; if not, it takes from the database value:

if (isset($this->request->post['featured_product'])) {
 $products = explode(',', $this->request->post[
 'featured_product']);
} else {
 $products = explode(',', $this->config->get(
 'featured_product'));
}

Describing The Code of Extensions

[52]

$products is run through a loop to make an array of products' names and IDs and is
passed to the template view.

$this->data['modules'] = $this->config->get('featured_module');

The preceding line of code retrieves the settings of the Featured module from the
database. Other parts of the code are similar to those defined in the Hello World
module, in Chapter 1, Getting Started with OpenCart Modules, and the same logics are
applied to the language file, so we don't need to describe these here.

Exploring the featured.tpl file under admin folder
We will be describing only the extra code snippets, as most of them are already
described in the Hello World module.

The most distinguishing section in the Featured module is the autocomplete input
box. For that, let's create an input box as follows:

<input type="text" name="product" value="" />

Whenever a user starts to type in the text box, the following code starts to work:

$('input[name=\'product\']').autocomplete({

It searches for similar-named products as follows:

admin/index.php?route=catalog/product/autocomplete

If it finds products, the product, on clicking, gets appended to the featured product
ID's <div> element and a product list is generated. The code is shown in the admin/
view/template/module/featured.tpl file as follows:

$('#featured-product').append('<div id="featured-product' +
 ui.item.value + '">' + ui.item.label + '<imgsrc=
 "view/image/delete.png" alt="" /><input type="hidden" value=
 "' + ui.item.value + '"/></div>')

When the red minus sign, to the right of the product, is clicked, the following code
snippet gets activated that deletes the rows of product:

$('#featured-product div img').live('click', function() {
 $(this).parent().remove();
 $('#featured-product div:odd').attr('class', 'odd');
 $('#featured-product div:even').attr('class', 'even');
 data = $.map($('#featured-product input'), function(element){
 return $(element).attr('value');
 });

Chapter 2

[53]

 $('input[name=\'featured_product\']').attr('value',
 data.join());
});

Exploring the featured.php file under the catalog
folder
Only the extra code snippets are described, as most of them are discussed in Chapter
1, Getting Started with OpenCart Modules, and most of them are similar to the Hello
World module.

$products = explode(',', $this->config->get('featured_product'));

If we echo $this->config->get('featured_product'), we will get the product
IDs that are separated by commas. Thus, the $products array is assigned by
separating the product IDs by commas.

if (empty($setting['limit'])) {
 $setting['limit'] = 5;
}

If there is no limit inserted while setting the Featured module, it will show only five
products.

$products = array_slice($products, 0, (int)$setting['limit']);

An iteration is performed using foreach to the $products array, and with the help
of $this->model_catalog_product->getProduct($product_id);, all details
of the product are retrieved and only the required elements are assigned to the
$products array to be passed to the template file as follows:

$this->data['products'][] = array(
 'product_id' => $product_info['product_id'],
 'thumb' => $image,
 'name' => $product_info['name'],
 'price' => $price,
 'special' => $special,
 'rating' => $rating,
 'reviews' =>sprintf($this->language->get('text_reviews'),
 (int)$product_info['reviews']),
 'href' => $this->url->link('product/product',
 'product_id=' . $product_info['product_id'])
);

With the preceding code, only the required data such as product_id, thumb, and
name are assigned to the array that will be shown in the template file.

Describing The Code of Extensions

[54]

The code of catalog/view/theme/default/template/module/featured.tpl are
similar to the Hello World module template file. Here, products that are added on
the backend are shown. The $products array is received from the controller file,
which consists of the product ID, thumb of image, name, price, special price, rating,
reviews, and link to the product details. The same data are shown in the Featured
module's frontend.

The Shipping module
OpenCart has many prebuilt shipping modules. Navigate to Admin | Extensions |
Shipping, it lists out the Shipping module as shown in the following screenshot:

You have to install and configure it, and it will be shown at the frontend under
Shipping Methods while performing a checkout.

As you already know, modules or extensions can be created by cloning an existing
one that functions in a similar way to what you want. So, for Shipping, we will be
cloning any one of them that fulfills our requirement. For example, if you want the
shipping cost to be charged as per the total cost purchased, you can clone the weight-
based shipping module; likewise, if you want to make DHL shipping rates module
using the live rate, look up from the DHL site. You need to start with the existing
UPS shipping extension.

Let's start to make the Shipping module that is based on the total cost purchased.

Chapter 2

[55]

Changes made in the admin folder
In this section we will see the changes that are to be made in the admin folder to
create the shipping module:

1.	 Navigate to admin/controller/shipping/ and copy weight.php and paste
it in the same folder. Rename it to totalcost.php, open it in your favorite
text editor, and then find the following lines:
class ControllerShippingWeight extends Controller {

Change the class name as follows:
class ControllerShippingTotalcost extends Controller {

Now find "weight" and replace all with "totalcost". Then, save the file.

2.	 Navigate to admin/language/english/shipping and copy weight.php and
paste in the same folder and rename it to totalcost.php and open it. Then
find "Weight" and replace all with "Total Cost".
After performing the replace, find the following code:
$_['entry_rate'] = 'Rates:
<span class=
 "help">Example: 5:10.00,7:12.00 Total Cost:
 Cost, totalcost:Cost, etc..';

Then perform the following changes:

$_['entry_rate'] = 'Total cost:Rates:

 Example: 100:10.00,200:20.00
 Total Cost:ShippingCost, TotalCost:Shipping Cost,
 etc.';

3.	 Navigate to admin/view/template/shipping, copy the weight.tpl file,
and paste it in the same folder. Rename it to totalcost.tpl, open it, then
find "weight", replace it with "totalcost", and then save it.

Changes made in the catalog folder
After the changes are made in the admin folder, we will now see the changes to be
made in the catalog folder to create the shipping module.

1.	 Go to catalog/model/shipping, copy the weight.php, paste it in the same
folder, and rename it tototalcost.php. Open it and find the following line:
class ModelShippingWeight extends Model {

Describing The Code of Extensions

[56]

Change the class name as follows:
class ModelShippingTotalcost extends Model {

Now find "weight" and replace all with "totalcost". After performing the
replacement, find the following lines of code:
$totalcost = $this->cart->gettotalcost();

And perform the following changes:
$totalcost = $this->cart->getSubTotal();

Our requirement is to show the shipping cost as per the total cost purchased,
so we have performed this change.
Now, find the following lines:
if ((string)$cost != '') {
$quote_data['totalcost_' . $result['geo_zone_id']] =
 array('code'=>'totalcost.totalcost_' . $result[
 'geo_zone_id'],'title' => $result['name'] . '
 (' . $this->language->get('text_totalcost') . '
 ' . $this->totalcost->format($totalcost, $this->
 config->get('config_totalcost_class_id')) . ')',
'cost'=> $cost,
'tax_class_id' => $this->config->get(
 'totalcost_tax_class_id'),
'text'=> $this->currency->format($this->tax->calculate(
 $cost, $this->config->get('totalcost_tax_class_id'),
 $this->config->get('config_tax'))));
}

As we need only the name, change the following line of code:
'title'=> $result['name'] . ' (' . $this->language->get(
 'text_totalcost') . '' . $this->totalcost->format(
 $totalcost, $this->config->get(
 'config_totalcost_class_id')) . ')',

To the following:
'title' => $result['name'],

Weight has different classes such as kilogram, gram, and pound, but in
our total cost purchased, we did not have any class specified, so we have
removed it.
Now click on Save.

Chapter 2

[57]

2.	 Go to catalog/language/english/shipping and copy the weight.php file
and paste it in the same folder and rename it to totalcost.php. Open it and
find "Weight" and replace it with "Total Cost"
With these changes, the module is ready to be installed. Navigate to Admin
| Extensions | Shipping, find Total Cost Based Shipping, click on [Install],
provide the permission to modify and access to the user, and then edit to
configure it. In the general tab, make a change in the Status field to Enabled.
Other tabs are loaded as per the Geo Zone setting. For default, UK Shipping
and UK VAT Zone are set as Geo Zone:

3.	 Now insert Total cost Rates. If the subtotal reaches 100 and the shipping cost
is 20, we have to insert 100:20.

4.	 If the customer tries to order more than the inserted total cost, shipping is
deactivated.

5.	 In this way, you can now clone the Shipping modules and make the changes
on the logics as necessary.

The Payment module
Any module can be made by cloning an existing module with similar functionality as
it will make coding very easy and fast. You can view the list of Payment modules by
navigating to Admin | Extensions | Payments.

Now you can also make the Payment module similar to the Shipping module. While
making the Payment module, we have to work out in the Payment folder.

Before starting to write a payment module, you need to know the on-site payment
and off-site payment, which are the broad categories of the payment methods.

Describing The Code of Extensions

[58]

Off-site payment
Off-site payment means making payment to the payment service by redirecting to
the payment service website and making the transaction; upon success or failure,
they are returned back to the relevant pages. If payment is successful, it shows the
success page, else it will show the failure message.

Some of the off-site payment modules are: PayPal Standard, Moneybookers, LiqPay,
PayPoint, and so on.

If you are using the off-site payment, choose one of the off-side payment modules of
OpenCart and then clone your desired Payment modules.

On-site payment
Payments are made on the same site with on-site payment; it means the customer
never leaves your site to make the payment. Some of the on-site OpenCart payment
modules are: Authorize.net AIM, PayPal Pro, SagePay Direct, and so on.

If using on-site payment, it is suggested to have the SSL certificate and SSL enabled
on the setting in OpenCart.

If you are using on-site payment, choose one of the on-site payment modules and
clone it and make your desired module.

Most of the code will be the same, only the controller file, catalog and some time
view template forms need to be changed while creating the Payment modules.

The Order Total module
Order totals are those modules which affect the total price of the order. You can find
the list of order totals at Admin | Extensions | Order Totals. Some of them are:

•	 Coupon: This option allows the customer to apply the coupon discount
•	 Store Credit: If you have store credit, it automatically decreases the total

purchase cost with the available credit

Chapter 2

[59]

•	 Handling Fee: This option provides an additional fee for handling the product
•	 Low Order Fee: This option provides extra cost if the customer orders the

minimum specified quantity
•	 Reward Points: Points are accumulated which can be used to buy reward

points products
•	 Sub-Total: This option shows the subtotal separately
•	 Taxes: This option shows taxes separately
•	 Total: This option shows the total amount to be billed
•	 Gift Voucher: This option is used to gift credit to purchase the products

When they are applied, there is a change in the Total value, so they are placed on the
Order Totals module. You will be able to see the Order totals module in the next
chapter. We will show you how to create the Order totals modules. We will go
in depth with the Tips Order Total module, as when someone likes to add Tips,
there is an increase on the order total.

Summary
In this chapter, we explored most of the system level libraries that OpenCart
provides. We explored most of the extra code used in the Featured Product
module by which you are now able to know the code flow of the OpenCart
module. Likewise, we created a new Shipping module, which shows the shipping
cost according to the total cost purchased by cloning the weight-based shipping.
Similarly, we discussed the payment module of OpenCart and the ways to clone
it. With this, you are able to start coding with OpenCart Extensions (Modules,
Payments, and Shipping).

Creating Custom
OpenCart Modules

In this chapter we will create a Feedback module and a Tips module and show
how code works and are managed. You already know how to duplicate or clone
the module, as explained in Chapter 1, Getting Started with OpenCart Modules, and
likewise know most of the global methods, which make it easy for you to create a
module. In the Feedback module, visitors will be able to write feedback about the
site, and the feedback provided will be approved by the admin and shown at the
frontend. At last, we will create the Order Total module as tips get added to the
order total.

Getting started with feedback
management
We will show you the way to create the admin form and the list page, after this
we will move forward to make the frontend pages where visitors can submit their
feedback and lists of the feedback. As always, we will start with analyzing our
requirements and seeing which part of OpenCart resembles them, so that we can
clone the pages, making it easy to work with the code.

Database tables for feedback
We start by making tables at the database. As OpenCart is multistore, multilanguage
support and can be shown at many layouts, we need to take care of those as well.
For these, we have to make approximately four tables: feedback, feedback_
description, feedback_to_layout, and feedback_to_store.

Creating Custom OpenCart Modules

[62]

In the following screenshot, oc_ is the database prefix we use while installing
Opencart. If you are not sure about the database prefix, you can see the config.
php file at the root folder of the OpenCart, open it, and find the line "define('DB_
PREFIX'". You will see define('DB_PREFIX', 'oc_'); and as per this the database
prefix is oc_. The oc_feedback table stores the status, sort order, date added, and date
modified with the feedback ID. The oc_feedback_description table stores the author
name, feedback given, and language ID for multiple languages. The oc_feedback_to_
store table saves the store ID and feedback for the particular store of OpenCart whose
feedback needs to be shown as OpenCart are multistores, and the oc_feedback_to_
layout table stores to whichever layout the feedback module is to be shown.

The following screenshot shows the database schema:

The following are the queries that need to run in the database to create the feedback
table, feedback description table, feedback to layout table, and feedback to store
table. If you have used a prefix other than the oc_, change oc_ to that prefix on the
following query; only then it will be ready to run.

CREATE TABLE IF NOT EXISTS `oc_feedback` (

 `feedback_id` int(11) NOT NULL AUTO_INCREMENT,

 `sort_order` int(3) NOT NULL DEFAULT '0',

 `status` tinyint(1) NOT NULL,

 `date_added` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',

 `date_modified` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',

 PRIMARY KEY (`feedback_id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=5 ;

Chapter 3

[63]

CREATE TABLE IF NOT EXISTS `oc_feedback_description` (

 `feedback_id` int(11) NOT NULL,

 `language_id` int(11) NOT NULL,

 `feedback_author` varchar(255) NOT NULL,

 `description` text NOT NULL,

 PRIMARY KEY (`feedback_id`,`language_id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS `oc_feedback_to_layout` (

 `feedback_id` int(11) NOT NULL,

 `store_id` int(11) NOT NULL,

 `layout_id` int(11) NOT NULL,

 PRIMARY KEY (`feedback_id`,`store_id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS `oc_feedback_to_store` (

 `feedback_id` int(11) NOT NULL,

 `store_id` int(11) NOT NULL,

 PRIMARY KEY (`feedback_id`,`store_id`)

) ENGINE=MyISAM DEFAULT CHARSET=utf8;

After running the preceding query on database, we now will start to make the custom
page to list out all the feedback with pagination and a form to edit and insert the
feedback at the admin section. Then, we will move to the frontend pages. As you know,
OpenCart follows the MVC framework, so you need to manage the files likewise. For
the feedback, you need to create files as shown in the following screenshot:

Creating Custom OpenCart Modules

[64]

Creating files at the admin section for feedback
At the admin section, we will create files that will create a list of feedback and also a
form to insert or edit the feedback and save it into the database. For this, we will start
with the language file, which is the easiest one.

Creating the language file at the admin section
Create a file at admin/language/english/catalog/feedback.php, and paste the
following lines of code:

<?php
$_['heading_feedback']= 'Feedback';

$_['heading_feedback_author']= 'Feedback';
$_['text_success'] = 'Success: You have modified feedback!';
$_['text_default'] = 'Default';
$_['column_feedback_author']= 'Feedback Author';
$_['column_sort_order']	= 'Sort Order';
$_['column_action'] = 'Action';
$_['entry_feedback_author']= 'Feedback Author:';
$_['entry_description'] = 'Feedback Description:';
$_['entry_store'] = 'Stores:';
$_['entry_status'] = 'Status:';
$_['entry_sort_order'] = 'Sort Order:';
$_['entry_layout'] = 'Layout Override:';
$_['error_warning'] = 'Warning: Please check the form
 carefully for errors!';
$_['error_permission'] = 'Warning: You do not have permission to
 modify feedback!';
$_['error_description'] = 'Description must be more than 3
 characters!';
$_['error_store'] = 'Warning: This feedback page cannot be
 deleted as its currently used by %s stores!';
?>

The preceding lines of code are written to describe the text that is set to variable for
the language, which can be accessed and used in the controller files.

Chapter 3

[65]

Creating the model file at the admin section
To create a model file, you need to make a model folder, and in this folder, it will
be called at the controller as $this->load->model(FOLDER_NAME/FILE_NAME_
WITHOUT_EXTENSION'). For the feedback, you have to create a file named feedback.
php at admin/model/catalog/feedback.php. Thus, you can load this file at
controller as this->load->model('catalog/feedback').

After creating the file, you need to make a unique class name starting with the word
Model, followed by the folder name, and then file name without extensions. So, for
our feedback, the class name will be ModelCatalogFeedback, which extends the
parent Model class.

<?php
class ModelCatalogFeedback extends Model {
 public function addfeedback($data) {
 $this->db->query("INSERT INTO " . DB_PREFIX . "feedback SET
 sort_order = '" . (int)$data['sort_order'] . "', status = '"
 . (int)$data['status'] . "'");
 $feedback_id = $this->db->getLastId();
 foreach ($data['feedback_description'] as $language_id =>
 $value) {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_description SET feedback_id = '" .
 (int)$feedback_id . "', language_id = '" .
 (int)$language_id . "', feedback_author= '" . $this->db
 ->escape($value['feedback_author']) . "', description = '"
 . $this->db->escape($value['description']) . "'");
 }
 if (isset($data['feedback_store'])) {
 foreach ($data['feedback_store'] as $store_id) {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_to_store SET feedback_id = '" .
 (int)$feedback_id . "', store_id = '" . (int)$store_id .
 "'");
 }
 }
 if (isset($data['feedback_layout'])) {
 foreach ($data['feedback_layout'] as $store_id => $layout) {
 if ($layout) {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_to_layout SET feedback_id = '" .
 (int)$feedback_id . "', store_id = '" . (int)$store_id
 . "', layout_id = '" . (int)$layout['layout_id'] .
 "'");

Creating Custom OpenCart Modules

[66]

 }
 }
 }
 $this->cache->delete('feedback');
 }
}

The preceding code shows how we can query the database. We have to start with
$this->db->query() and inside the braces we write the SQL query that we have
already seen in the global methods in Chapter 2, Describing The Code of Extensions. As
per the preceding code, $this->db->query() inserts the feedback ID, sort order,
and status on the feedback table and retrieves the feedback ID that was inserted
last and assigns it to $feedback_id. Also, $data['feedback_description'] is
looped as you can have multiple descriptions because it can contain many languages.
Thus, it inserts the feedback ID, language ID, author, and feedback description into
the description table. As OpenCart supports the multistore and multiple layouts,
you must take care of them. After the insertion of the description, we have to run
the store query to insert the store followed by the layout insertion. Then a cache is
deleted if it was already created.

public function editfeedback($feedback_id, $data) {
 $this->db->query("UPDATE " . DB_PREFIX . "feedback SET
 sort_order = '" . (int)$data['sort_order'] . "', status = '" .
 (int)$data['status'] . "' WHERE feedback_id = '" .
 (int)$feedback_id . "'");
 $this->db->query("DELETE FROM " . DB_PREFIX .
 "feedback_description WHERE feedback_id = '" .
 (int)$feedback_id . "'");
 foreach($data['feedback_description'] as $language_id => $value)
 {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_description SET feedback_id = '" .
 (int)$feedback_id . "', language_id = '" . (int)$language_id
 . "', feedback_author= '" . $this->db
 ->escape($value['feedback_author']) . "', description = '" .
 $this->db->escape($value['description']) . "'");
 }
 $this->db->query("DELETE FROM " . DB_PREFIX . "feedback_to_store
 WHERE feedback_id = '" . (int)$feedback_id . "'");
 if (isset($data['feedback_store'])) {
 foreach ($data['feedback_store'] as $store_id) {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_to_store SET feedback_id = '" .
 (int)$feedback_id . "', store_id = '" . (int)$store_id .
 "'");

Chapter 3

[67]

 }
 }
 $this->db->query("DELETE FROM " . DB_PREFIX .
 "feedback_to_layout WHERE feedback_id = '" . (int)$feedback_id
 . "'");
 if (isset($data['feedback_layout'])) {
 foreach ($data['feedback_layout'] as $store_id => $layout) {
 if ($layout['layout_id']) {
 $this->db->query("INSERT INTO " . DB_PREFIX .
 "feedback_to_layout SET feedback_id = '" .
 (int)$feedback_id . "', store_id = '" . (int)$store_id .
 "', layout_id = '" . (int)$layout['layout_id'] . "'");
 }
 }
 }
 $this->db->query("DELETE FROM " . DB_PREFIX . "url_alias WHERE
 query = 'feedback_id=" . (int)$feedback_id. "'");
 $this->cache->delete('feedback');
}

The queries update the database table row of feedback, feedback description,
feedback store, and feedback layout. The first query shown in the code will update
the feedback table row, but for other tables of feedback description, feedback store,
and feedback layout, it first deletes all the related feedback as per the feedback ID
and then inserts them again. When the feedback table is updated, it deletes all the
related feedback description in the feedback_description table and then inserts
the updated data; although no changes are made, it takes them as the new value and
inserts this in the loop. The same is done for feedback_to_layout and feedback_
to_store. Then it deletes the cache if it is already created.

public function deletefeedback($feedback_id) {
 $this->db->query("DELETE FROM " . DB_PREFIX . "feedback WHERE
 feedback_id = '" . (int)$feedback_id . "'");
 $this->db->query("DELETE FROM " . DB_PREFIX .
 "feedback_description WHERE feedback_id = '" .
 (int)$feedback_id . "'");
 $this->db->query("DELETE FROM " . DB_PREFIX . "feedback_to_store
 WHERE feedback_id = '" . (int)$feedback_id . "'");
 $this->db->query("DELETE FROM " . DB_PREFIX .
 "feedback_to_layout WHERE feedback_id = '" . (int)$feedback_id
 . "'");
 $this->cache->delete('feedback');
}

Creating Custom OpenCart Modules

[68]

The preceding code is used to delete the feedback; you have to take care to delete
data from all the tables whenever you use the delete operation. As per our feedback,
you have to delete data from the feedback, feedback_description, feedback_to_
store, and feedback_to_layout tables as well as the cache file.

public function getfeedback($feedback_id) {
 $query = $this->db->query("SELECT * FROM " . DB_PREFIX .
 "feedback WHERE feedback_id = '" . (int)$feedback_id . "'");
 return $query->row;
}

The preceding code snippet is used to retrieve a row; to run a select query, you
have to run the query with $this->db->query(), and then assign to some variable
and run with $Variable_Name->row;. To retrieve a single column and to retrieve
multiple rows, we have to write $Variable_Name->rows;, which returns an array.
As per our SQL query, we just need a single row of the specified feedback ID so we
have performed $query->row;.

public function getfeedbackDescriptions($feedback_id) {
 $feedback_description_data = array();
 $query = $this->db->query("SELECT * FROM ".DB_PREFIX .
 "feedback_description WHERE feedback_id ='". (int)$feedback_id
 ."'");
 foreach ($query->rows as $result) {
 $feedback_description_data[$result['language_id']] = array(
 'feedback_author' => $result['feedback_author'],
 'description' => $result['description']);
 }return $feedback_description_data;
}

The preceding code retrieves the description of the respective feedback ID passed
and will return all the languages' description as well as return the description in an
array.

public function getTotalFeedbacks() {
 $query =$this->db->query("SELECT COUNT(*) AS total FROM
 ".DB_PREFIX."feedback");
 return $query->row['total'];
}

The preceding lines of code return the total number of feedback.

public function getfeedbacks($data = array()) {
 if ($data) {

Chapter 3

[69]

 $sql = "SELECT * FROM " . DB_PREFIX . "feedback f LEFT JOIN "
 . DB_PREFIX . "feedback_description fd ON (f.feedback_id =
 fd.feedback_id) WHERE fd.language_id = '" . (int)$this
 ->config->get('config_language_id') . "'";
 $sort_data = array('fd.feedback_author','f.sort_order');
 if (isset($data['sort']) &&in_array($data['sort'],
 $sort_data)) {
 $sql .= " ORDER BY " . $data['sort'];
 } else {$sql .= " ORDER BY fd.feedback_author";
 }
 if (isset($data['order']) && ($data['order'] == 'DESC')) {
 $sql .= " DESC";
 } else {$sql .= " ASC";
}
if (isset($data['start']) || isset($data['limit'])) {
 if ($data['start'] < 0) {	 $data['start'] = 0; }
 if ($data['limit'] < 1) {	 $data['limit'] = 20; }
 $sql .= " LIMIT " . (int)$data['start'] . "," .
 (int)$data['limit'];
}
$query = $this->db->query($sql);
return $query->rows;
} else {
 $feedback_data = $this->cache->get('feedback.' . (int)$this-
 >config->get('config_language_id'));
 if (!$feedback_data) {
 $query = $this->db->query("SELECT * FROM " . DB_PREFIX .
 "feedback f LEFT JOIN " . DB_PREFIX . "feedback_description
 fd ON (f.feedback_id = fd.feedback_id) WHERE fd.language_id
 = '" . (int)$this->config->get('config_language_id') . "'
 ORDER BY fd.feedback_id.");
 $feedback_data = $query->rows;
 $this->cache->set('feedback.' . (int)$this->config
 ->get('config_language_id'), $feedback_data);
 }
 return $feedback_data;
 }
}

Creating Custom OpenCart Modules

[70]

For retrieving all the feedback from the database we use the preceding code. The
$data array, which is passed in the function, holds the sort order, order by, limit of
rows, and helps in filtering, sorting, and limiting the rows from the whole data. If
$data is set, it retrieves data from the SQL query and retrieves the required rows by
filtering as per $data; else it tries to retrieve from the cache files if it is already set. If
it does not find the cache, it again runs the query and retrieves the rows of feedback
and sets the cache and returns the array of feedback. It will retrieve the data from the
feedback and feedback_description table and return as an array. It is sorted by
passed data as name or so on, else by default, it is sorted by $feedback_id.

public function getfeedbackStores($feedback_id) {
 $feedback_store_data = array();
 $query = $this->db->query("SELECT * FROM " . DB_PREFIX .
 "feedback_to_store WHERE feedback_id = '" . (int)$feedback_id
 . "'");
 foreach ($query->rows as $result) {
 $feedback_store_data[] = $result['store_id'];
 }
 return $feedback_store_data;
}

The preceding code returns all stores that the specified feedback ID passed.

public function getfeedbackLayouts($feedback_id) {
 $feedback_layout_data = array();
 $query = $this->db->query("SELECT * FROM " . DB_PREFIX .
 "feedback_to_layout WHERE feedback_id = '" . (int)$feedback_id
 . "'");
 foreach ($query->rows as $result) {
 $feedback_layout_data[$result['store_id']] =
 $result['layout_id'];
 }
 return $feedback_layout_data;
}

The preceding code returns all the layouts of the specified feedback ID passed.

public function getTotalfeedbacksByLayoutId($layout_id) {
 $query = $this->db->query("SELECT COUNT(*) AS total FROM " .
 DB_PREFIX . "feedback_to_layout WHERE layout_id = '" .
 (int)$layout_id . "'");
 return $query->row['total'];
 }
?>

Chapter 3

[71]

The getTotalfeedbacksByLayout function will return the number of feedback counts
that the layout_id has passed and closes the main model class. In this way, you can
create the model file and make any kinds of data retrieval, insertion, and deletion
work and these will be used on the controller files by loading the model file.

Creating the controller file at the admin section
Now you will see the controller file of admin that controls all the code insert, list,
delete, and form sections. You will get a description on each of them. Create a file at
admin/controller/catalog/feedback.php and start to insert the following lines
of code:

<?php
class ControllerCatalogFeedback extends Controller {
 private $error = array();
 public function index() {
 $this->language->load('catalog/feedback');
 $this->document->setTitle($this->language
 ->get('heading_feedback'));
 $this->load->model('catalog/feedback');
 $this->getList();
}

You created a controller named ControllerCatalogFeedback, which is extended
from the parent called Controller. Next, you made the index function, which gets
loaded by default. Within that, it loads the language files you have already created,
and the title is set with the feedback heading and loaded with the feedback.php
model file.

public function insert() {
 $this->language->load('catalog/feedback');
 $this->document->setTitle($this->language
 ->get('heading_feedback'));
 $this->load->model('catalog/feedback');
 if (($this->request->server['REQUEST_METHOD'] == 'POST') &&
 $this->validateForm()) {
 $this->model_catalog_feedback->addfeedback($this->request
 ->post);
 $this->session->data['success'] = $this->language
 ->get('text_success');
 $url = '';
 if (isset($this->request->get['sort'])) {
 $url .='&sort=' . $this->request->get['sort'];}
 if (isset($this->request->get['order'])) {

Creating Custom OpenCart Modules

[72]

 $url .='&order=' . $this->request->get['order'];}
 if (isset($this->request->get['page'])) {
 $url .='&page=' . $this->request->get['page'];
 }
 $this->redirect($this->url->link('catalog/feedback',
 'token=' . $this->session->data['token'] . $url, 'SSL'));
 }
 $this->getForm();
}

When you click on the Insert button, this function is called, and it loads the feedback
language file and sets the title of the document as "Feedback", as heading_feedback
holds the text "Feedback". Then, it loads the feedback.php model file and checks
whether its form is submitted or not. If the form is not submitted, it will load
the getForm() function from the same feedback.php controller file that shows
the form. If the form is submitted and is validated, it will save the data into the
database and sends the $_POST value to model $this->model_catalog_feedback-
>addfeedback($this->request->post); for adding the feedback to the database.
Then, the success session is set and applied with the sort order and limit and is
redirected to the list of the feedback.

public function update() {
 $this->language->load('catalog/feedback');
 $this->document->setTitle($this->language
 ->get('heading_feedback'));
 $this->load->model('catalog/feedback');
 if (($this->request->server['REQUEST_METHOD'] == 'POST') &&
 $this->validateForm()) {
 $this->model_catalog_feedback->editfeedback($this->request
 ->get['feedback_id'], $this->request->post);
 $this->session->data['success'] = $this->language
 ->get('text_success');
 $url = '';
 if (isset($this->request->get['sort'])) {
 $url .='&sort=' . $this->request->get['sort'];}
 if (isset($this->request->get['order'])) {
 $url .='&order=' . $this->request->get['order'];}
 if (isset($this->request->get['page'])) {
 $url .='&page=' . $this->request->get['page'];}
 $this->redirect($this->url->link('catalog/feedback', 'token='
 . $this->session->data['token'] . $url, 'SSL'));
 }
 $this->getForm();
 }

Chapter 3

[73]

When we click on the edit link, the update page is loaded and hence the update
function of this controller is called. It also loads the feedback.php language file, sets
the title of the document, and loads the feedback.php model file. If the submitted
data are valid and the requested method is POST, the feedback will be saved into the
database, else it again calls the form and the form is shown. Update is made using
code $this->model_catalog_feedback->editfeedback($this->request-
>get['feedback_id'], $this->request->post);. It calls the update function
of the feedback model, and the session is set, it is applied the sort order limit, and
redirected to the list of the feedback.

public function delete() {
 $this->language->load('catalog/feedback');
 $this->document->setfeedback_author($this->language
 ->get('heading_feedback'));
 $this->load->model('catalog/feedback');
 if (isset($this->request->post['selected']) && $this
 ->validateDelete()) {
 foreach ($this->request->post['selected'] as $feedback_id) {
 $this->model_catalog_feedback->deletefeedback($feedback_id);
 }
 $this->session->data['success'] = $this->language
 ->get('text_success');
 $url = '';
 if (isset($this->request->get['sort'])) {
 $url .='&sort=' . $this->request->get['sort'];}
 if (isset($this->request->get['order'])) {
 $url .= '&order=' . $this->request->get['order'];
 }
 if (isset($this->request->get['page'])) {
 $url .='&page=' . $this->request->get['page'];
 }
 $this->redirect($this->url->link('catalog/feedback', 'token='
 . $this->session->data['token'] . $url, 'SSL'));
 }
 $this->getList();
}

For deleting the feedback, the preceding code is used. On the list of feedback page
when you select the checkbox, which is to the left of each row, and click on the delete
button, the delete function of the controller is executed. It deletes the selected rows
from the database, and the query that it runs is with the help of $this->model_
catalog_feedback->deletefeedback($feedback_id);. The deletefeedback
function will be run on the loop or on each selected row, and the rows are deleted.

Creating Custom OpenCart Modules

[74]

Till now, we have shown you the full code but taking the length of the code
into consideration, we are now doing a copy, paste, and replace action by which
it will be easy for us to mention only the required code and discard the one that is
already mentioned.

Navigate to admin/controller/catalog/information.php and open it. Now
find the protected function, getList(), copy the whole function to our feedback.
php controller, and paste to the controller class just below the delete class as
we mentioned previously; however, you can keep it anywhere outside the other
functions. After pasting, find all the "information" words and change them to
"feedback". Likewise, find all the "title" words and change them to feedback_author
but only within the getList() function and not in the entire document. With the
changes mentioned previously, you will see the following lines of code:

if (isset($this->request->get['sort'])) {
 $sort = $this->request->get['sort'];
} else {
 $sort = 'fd.feedback_author';
}
$url = '';
if (isset($this->request->get['sort'])) {
 $url .='&sort=' . $this->request->get['sort'];
}

Whenever you click on Sort Order on the list, it starts to order the table according to
the sort order. If there is no click, it sorts by feedback_author. Similarly, the page
number and order number are set as well as the get value of sort of the URL.

$this->data['breadcrumbs'] = array();
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_home'),
 'href' => $this->url->link('common/home', 'token=' . $this
 ->session->data['token'], 'SSL'),
 'separator' => false
);

Breadcrumbs are created in an array and passed on to the template file.

$this->data['insert'] = $this->url
 ->link('catalog/feedback/insert', 'token=' . $this->session
 ->data['token'] . $url, 'SSL');

$this->data['delete'] = $this->url
 ->link('catalog/feedback/delete', 'token=' . $this->session
 ->data['token'] . $url, 'SSL');

Chapter 3

[75]

Insert and delete links are created and passed on to the template file.

$data = array(
 'sort' => $sort,
 'order' => $order,
 'start' => ($page - 1) * $this->config
 ->get('config_admin_limit'),
 'limit' => $this->config->get('config_admin_limit')
);
$feedback_total = $this->model_catalog_feedback
 ->getTotalfeedbacks();
$results = $this->model_catalog_feedback->getfeedbacks($data);

Results are received by querying the database.

foreach ($results as $result) {
 $action = array();
 $action[] = array(
 'text' => $this->language->get('text_edit'),
 'href' => $this->url->link('catalog/feedback/update', 'token=' .
 $this->session->data['token'] . '&feedback_id=' .
 $result['feedback_id'] . $url, 'SSL')
);
 $this->data['feedbacks'][] = array(
 'feedback_id' => $result['feedback_id'],
 'feedback_author' => $result['feedback_author'],
 'sort_order' => $result['sort_order'],
 'selected' =>isset($this->request->post['selected'])
 &&in_array($result['feedback_id'], $this->request
 ->post['selected']),
 'action' => $action
);
}

Results received are combined to make it an array and passed to the template file.

$this->data['heading_feedback_author'] = $this->language
 ->get('heading_feedback_author');
$this->data['text_no_results'] = $this->language
 ->get('text_no_results');

Messages are retrieved from the language file and passed to the template file. Now
again navigate to admin/controller/catalog/information.php, and open it
to find the getForm()protected function and copy the whole function's code to
our feedback.php controller. Paste this into the controller class just below the
getlist() function as we mentioned previously, but you can keep it anywhere
outside the other functions.

Creating Custom OpenCart Modules

[76]

After pasting, find all the "information" words and change them to "feedback", and
likewise find all the "title" words and change them to feedback_author, but only
within the getForm() function and not in the entire document. As there are some
extra fields, we have to remove the following code snippet:

if (isset($this->request->post['keyword'])) {
 $this->data['keyword'] = $this->request->post['keyword'];
} elseif (!empty($feedback_info)) {
 $this->data['keyword'] = $feedback_info['keyword'];
} else {$this->data['keyword'] = '';}

if (isset($this->request->post['bottom'])) {
 $this->data['bottom'] = $this->request->post['bottom'];
} elseif (!empty($feedback_info)) {
 $this->data['bottom'] = $feedback_info['bottom'];
} else {$this->data['bottom'] = 0;}

Once the replacement is complete and the extra fields are removed, our getForm
function is ready.

$this->data['heading_feedback_author'] = $this->language-
>get('heading_feedback_author');
$this->data['text_default'] = $this->language->get('text_default');
$this->data['text_enabled'] = $this->language->get('text_enabled');

The preceding lines of code, and many such lines in the function, take the text or the
sentence from the language and pass it to the template files.

if (isset($this->request->get['feedback_id']) && ($this->request
 ->server['REQUEST_METHOD'] != 'POST')) {
 $feedback_info = $this->model_catalog_feedback
 ->getfeedback($this->request->get['feedback_id']);
 }

This part of code checks whether the feedback_id is passed with the GET method of
the form, and if so, it will retrieve the feedback and assign it to $feedback_info.

$this->data['token'] = $this->session->data['token'];

To preserve the session state within the admin section, the token session is defined
and needs to be passed within all the URLs used within the admin section.

$this->load->model('localisation/language');
$this->data['languages'] = $this->model_localisation_language
 ->getLanguages();

Chapter 3

[77]

It loads the language.php model, which is at the localization folder on the model
section. It is loaded to load languages used in the site. All languages used are passed
to the template file as the languages variable.

if (isset($this->request->post['feedback_description'])) {
 $this->data['feedback_description'] = $this->request
 ->post['feedback_description'];
} elseif (isset($this->request->get['feedback_id'])) {
 $this->data['feedback_description'] = $this
 ->model_catalog_feedback->getfeedbackDescriptions($this
 ->request->get['feedback_id']);
} else {$this->data['feedback_description'] = array();}

The preceding code checks whether feedback_description is passed as POST,
and feedback_id is passed as a GET method or something else. If feedback_
description is passed as POST, it will hold the POST data and if feedback_id is
passed as the GET method, it will retrieve feedback_description from the database.
If it is none, it will assign the blank array to feedback_description.

$this->load->model('setting/store');
$this->data['stores'] = $this->model_setting_store->getStores();

It loads the store.php model from the setting folder and retrieves all the stores and
passes it to the template as the stores variable.

if (isset($this->request->post['feedback_store'])) {
 $this->data['feedback_store'] = $this->request
 ->post['feedback_store'];
} elseif (isset($this->request->get['feedback_id'])) {
 $this->data['feedback_store'] = $this->model_catalog_feedback
 ->getfeedbackStores($this->request->get['feedback_id']);
} else {$this->data['feedback_store'] = array(0);}

If the store is passed as POST, it will hold the POST data; if feedback_id is passed as
GET, it will retrieve the store from the database. If it is none, it will assign an array
with the zero value to the store, which is the default store value. The overall request
data is checked with the following lines of code.

if (isset($this->request->post['feedback_layout'])) {
 $this->data['feedback_layout'] = $this->request
 ->post['feedback_layout'];
} elseif (isset($this->request->get['feedback_id'])) {
 $this->data['feedback_layout'] = $this->model_catalog_feedback
 ->getfeedbackLayouts($this->request->get['feedback_id']);
} else {$this->data['feedback_layout'] = array();}

Creating Custom OpenCart Modules

[78]

The code snippets check whether feedback_layout is passed as POST, feedback_
id is passed as a GET method, or something else. If feedback_layout is passed as
POST, it will hold the POST data, if feedback_id is passed as the GET, it will retrieve
feedback_layout from the database. If it is none, it will assign the blank array to
feedback_layout.

protected function validateForm() {
 if (!$this->user->hasPermission('modify', 'catalog/feedback')) {
 $this->error['warning'] = $this->language
 ->get('error_permission');
 }
 if ($this->error && !isset($this->error['warning'])) {
 $this->error['warning'] = $this->language
 ->get('error_warning');
 }	
 if (!$this->error) {return true;} else {return false;}
}

The validateForm()function is to validate the form and needs to be copied just
below the getForm() function. It checks for user permission, whether to modify the
feedback section or not. If it does not have permission, an error is shown.

protected function validateDelete() {
 if (!$this->user->hasPermission('modify', 'catalog/feedback')) {
 $this->error['warning'] = $this->language
 ->get('error_permission');
 }
 if (!$this->error) {return true;} else {return false;}
}

The validateDelete()function is used to validate deletion. First, it checks whether
the user has permission to modify or not. If the user has permission to modify, only
he/she is able to delete. Then, they place the closing curly brace at the end for the class.

Creating the template files for form and list at
the admin
Navigate to admin/view/template/catalog/, copy information_form.tpl, paste
it in the same folder, and rename it as feedback_form.tpl. Likewise, copy the
information_list.tpl file, paste on the same folder, and rename it to feedback_
list.tpl.

Chapter 3

[79]

Now open the feedback_list.tpl file, look for information, and replace all with
feedback. Likewise, look for title and replace all with feedback_author. Your
feedback_list.tpl is now ready after the replacing process. Most of the code is
already described in the feedback_list.tpl file, so we are ignoring them.

Now open the feedback_form.tpl file, look for information, and replace all with
feedback. Likewise, find title and replace all with feedback_author. It contains
some extra fields, so we have to remove them. Remove the following code from the
feedback_form.tpl file:

<tr>
 <td><?php echo $entry_keyword; ?></td>
 <td><input type="text" name="keyword" value="<?php echo
 $keyword; ?>" /></td>
</tr><tr>
 <td><?php echo $entry_bottom; ?></td>
 <td><?php if ($bottom) { ?> <input type="checkbox" name="bottom"
 value="1" checked="checked" />
 <?php } else { ?> <input type="checkbox" name="bottom" value="1"
 />
 <?php } ?></td>
</tr><tr>
<td><?php echo $entry_keyword; ?></td>
<td><input type="text" name="keyword" value="<?php echo $keyword;
 ?>" /></td>
</tr><tr>
 <td><?php echo $entry_bottom; ?></td>
 <td><?php if ($bottom) { ?> <input type="checkbox" name="bottom"
 value="1" checked="checked" />
 <?php } else { ?> <input type="checkbox" name="bottom" value="1"
 />
 <?php } ?></td>
</tr>

After removing the preceding code, feedback_form.tpl is ready. We are
describing some code snippets from the feedback_form.tpl file, while the
others are described already.

<td><textarea name="feedback_description[<?php echo
 $language['language_id']; ?>][description]" id="description<?php
 echo $language['language_id']; ?>"><?php echo
 isset($feedback_description[$language['language_id']]) ?
 $feedback_description[$language['language_id']]['description']
 : ''; ?></textarea>
 <?php if (isset($error_description[$language['language_id']])) {
 ?>

Creating Custom OpenCart Modules

[80]

 <?php echo
 $error_description[$language['language_id']]; ?>
 <?php } ?>
</td>

The preceding code shows the text area. Here the name of the text area of the form is
named as the feedback_description[<?php echo $language['language_id'];
?>][description] array for storing description as per the language. To show the
editor, id=description<?php echo $language['language_id']; ?> plays a vital
role. With the same ID name, the following code is called to show the editor:

<script type="text/javascript"
 src="view/javascript/ckeditor/ckeditor.js"></script>
<script type="text/javascript"><!--
<?phpforeach ($languages as $language) { ?>
CKEDITOR.replace('description<?php echo $language['language_id'];
 ?>', {
 filebrowserBrowseUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>',
 filebrowserImageBrowseUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>',
 filebrowserFlashBrowseUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>',
 filebrowserUploadUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>',
 filebrowserImageUploadUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>',
 filebrowserFlashUploadUrl:
 'index.php?route=common/filemanager&token=<?php echo $token;
 ?>'
});
<?php } ?>
//--></script>

With this, the JavaScript code CKEditor is loaded on the text area field.
Write the entire code and call the ID of the text area at CKEDITOR.
replace('description<?php echo $language['language_id']; ?>', replace
with your ID of the text area, and the editor will be shown at your text area.

With this, we complete the changes at the admin section. Now we are moving
towards the frontend or catalog folder.

Chapter 3

[81]

Creating the model file at the catalog folder frontend
We need to create a model file to retrieve data from the database. We will make
the file at the catalog folder. Navigate to catalog/model/catalog/ and create
feedback.php and insert the following lines of code:

<?php
Class ModelCatalogFeedback extends Model {
 public function getFeedbacks() {
 $query = $this->db->query("SELECT DISTINCT * FROM " .
 DB_PREFIX. "feedback f LEFT JOIN " . DB_PREFIX
 ."feedback_description fd ON (f.feedback_id =
 fd.feedback_id) LEFT JOIN " . DB_PREFIX. "feedback_to_store
 f2s ON (f.feedback_id = f2s.feedback_id)WHERE fd.language_id
 = '" . (int)$this->config->get('config_language_id') . "'
 AND f2s.store_id = '" . (int)$this->config
 ->get('config_store_id') . "' AND f.status = '1'");

 return $query->rows;
 }
 public function getTotalFeedbacks() {
 $query = $this->db->query("SELECT COUNT(*) AS total FROM " .
 DB_PREFIX . "feedback f LEFT JOIN " . DB_PREFIX .
 "feedback_to_store f2s ON (f.feedback_id = f2s.feedback_id)
 WHERE f2s.store_id = '" . (int)$this->config
 ->get('config_store_id') . "' AND f.status = '1'");

 return $query->row['total'];
 }
}
?>

We create a class named ModelCatalogFeedback as the feedback.php file is created
in the catalog folder. Then, we create a public function, getFeedbacks. It queries the
database to select all the data that have the status of 1 from the feedback table and
the feedback_description table, which is then returned. At last, we create a public
function called getTotalFeedbacks. It queries the database and counts all the active
feedback. It returns the total number of active feedback. The model file, feedback.
php, is ready.

Creating Custom OpenCart Modules

[82]

Creating the language file at the frontend
Now navigate to catalog/language/english/product/, create a feedback.php
file, and paste the following lines of code:

<?php
$_['text_feedback'] = 'List of feedback';
$_['text_description'] = 'List of feedback';
$_['text_keywords'] = 'List of feedback';
$_['text_error'] = 'Feedback not found!';
$_['text_empty'] = 'There are no feedbacks to list.';
?>

The required sentences are defined on the variable. Create the feedback.php
language file.

Creating the controller file at the frontend
After creating the language and model file, we are creating the controller file.
Navigate to catalog/controller/product/, create feedback.php, and insert
the following code:

<?php
class ControllerProductFeedback extends Controller {
 public function index() {
 $this->language->load('product/feedback');
 $this->load->model('catalog/feedback');

The language file and model files are loaded to get the language and retrieve the
model methods.

if (isset($this->request->get['page'])) {
 $page = $this->request->get['page'];
 } else { $page = 1;}
if (isset($this->request->get['limit'])) {
 $limit = $this->request->get['limit'];
} else {
 $limit = $this->config->get('config_catalog_limit');
}

Chapter 3

[83]

It will set the $page variable to the GET value of the page if GET is set, else $page will
be 1. This is needed for pagination. It will set the $limit variable to the GET value of
the limit. If GET is not set, $limit will be the value of the catalog limit of the setting
from the admin.

$this->data['breadcrumbs'] = array();
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_home'),
 'href' => $this->url->link('common/home'),
 'separator' => false
);
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_feedback'),
 'href' => $this->url->link('product/feedback'),
 'separator' =>'::'
);

It adds the breadcrumb, which is passed as an array to the template file.

$this->document->setTitle($this->language
 ->get('text_feedback'));
$this->document->setDescription($this->language
 ->get('text_description'));
$this->document->setKeywords($this->language
 ->get('text_keywords'));

The preceding lines of code set the document title, metadescription, and keywords.
These are described in the language file.

$this->data['heading_title'] = $this->language
 ->get('text_feedback');
$this->data['text_empty'] = $this->language
 ->get('text_empty');
$this->data['button_continue'] = $this->language
 ->get('button_continue');

The preceding lines of code are for retrieving the message from the language file and
passing it to the template file.

$url = '';
if (isset($this->request->get['page'])) {
 $url .='&page=' . $this->request->get['page'];
}
$this->data['feedbacks'] = array();
$data = array(
 'start' => ($page - 1) * $limit,
 'limit' => $limit
);

Creating Custom OpenCart Modules

[84]

The $data variable is passed as the parameter to retrieve only a limited number of
the feedback data.

$results = $this->model_catalog_feedback->getfeedbacks($data);
foreach ($results as $result) {
 $this->data['feedbacks'][] = array(
 'feedback_author' => $result['feedback_author'],
 'description'=>html_entity_decode($result['description'],
 ENT_QUOTES, 'UTF-8'),
);
}

The $results variable retrieves the data, and it is run through the loop to assign
only the author's name and the described feedback. Feedback description is stored
as encoded HTML, and we have to decode it to show only the formatted HTML; we
parse it with html_entity_decode.

$feedback_total = $this->model_catalog_feedback
 ->getTotalFeedbacks();

The preceding line of code retrieves the total number of active feedback.

$pagination = new Pagination();
$pagination->total = $feedback_total;
$pagination->page = $page;
$pagination->limit = $limit;
$pagination->text = $this->language->get('text_pagination');
$pagination->url = $this->url
 ->link('product/feedback','&page={page}');
$this->data['pagination'] = $pagination->render();

The preceding lines of code pass the pagination variable to the template file to show
pagination.

$this->data['limit'] = $limit;
$this->data['continue'] = $this->url->link('common/home');

if (file_exists(DIR_TEMPLATE . $this->config
 ->get('config_template') . '/template/product/feedback.tpl')) {
 $this->template = $this->config->get('config_template') .
 '/template/product/feedback.tpl';
 } else {
 $this->template = 'default/template/product/feedback.tpl';
 }

Chapter 3

[85]

It checks whether the template file for the current active theme is available or not,
and if available, it will render the feedback.tpl file, else it renders the feedback.
tpl file from the default theme.

$this->children = array(
 'common/column_left',
 'common/column_right',
 'common/content_top',
 'common/content_bottom',
 'common/footer',
 'common/header'
);
$this->response->setOutput($this->render());
}
}
?>

With this, the feedback.php controller file is also ready.

Creating the template file at the frontend
Navigate to catalog/view/theme/default/template/product, create feedback.
tpl, and insert the following code:

<?php echo $header; ?><?php echo $column_left; ?><?php echo
 $column_right; ?>
<div id="content"><?php echo $content_top; ?>
<div class="breadcrumb">
<?phpforeach ($breadcrumbs as $breadcrumb) { ?>
<?php echo $breadcrumb['separator']; ?><a href="<?php echo
 $breadcrumb['href']; ?>"><?php echo $breadcrumb['text']; ?>
<?php } ?>
</div>

The preceding lines of code show the breadcrumbs.

<h1><?php echo $heading_title; ?></h1>
<?php if ($feedbacks) { ?>
<div class="content">
<?phpforeach ($feedbacks as $feedback) { ?>
<div>
<div class="name">Name: <?php echo $feedback['feedback_author']; ?></
div>
<div class="description"><?php echo $feedback['description']; ?></div>
</div>
<?php } ?>

Creating Custom OpenCart Modules

[86]

The preceding lines of code show the List of feedback, Author name, and its
description as shown in the following screenshot:

To show the pagination for the template file, we have to insert the following lines of
code to the part where we would like to show the pagination:

<div class="pagination"><?php echo $pagination; ?></div>

It shows the pagination in the template file and mostly we show the pagination at the
bottom, so paste the code at the end of the feedback.tpl file.

</div>
<?php } ?>
<?php if (!$feedbacks) { ?>
<div class="content"><?php echo $text_empty; ?></div>

If there are no feedback, a message saying There are no feedbacks to show is shown
as per the language file.

<div class="buttons">
<div class="right"><a href="<?php echo $continue; ?>"
class="button"><?php echo $button_continue; ?></div>
</div>
<?php } ?>
<?php echo $content_bottom; ?></div>
<?php echo $footer; ?>

With this, the template file is also complete and thus our feedback management
is complete.

Chapter 3

[87]

Now, we insert the link on the menu to be able to manage the feedback, so
navigate to admin/language/english/common/header.php and look for the
following line of code:

$_['text_zone'] = 'Zones';

And after this insert the following line of code:

$_['text_feedback'] = 'Feedback';

In the language file, we defined text_feedback, which we need to call at the controller
and pass it to the template. Now, we are calling in the controller file, so navigate to
admin/controller/common/header.php and look for the following line of code:

$this->data['heading_title'] = $this->language->get('heading_title');

Then insert the following line of code:

$this->data['text_feedback'] = $this->language->get(' text_feedback');

Likewise, for linking the Feedback word, we have to define the URL and it is done as
shown in the following code. For this, we have to insert the following lines of code
just before $this->data['stores'] = array();:

$this->data['feedback_link'] = $this->url->link('catalog/feedback',
'token=' . $this->session->data['token'], 'SSL');

Now navigate to admin/view/template/common/header.tpl and look for the
following line of code:

<a href="<?php echo $review; ?>"><?php echo $text_review; ?></
li>

Then, insert the following line of code:

<a href="<?php echo $feedback; ?>"><?php echo $feedback; ?></
li>

With the preceding code insertion, you will be able to see the Feedback link when
you hover on Catalog of the admin menu. Now click on the Feedback link and you
will be able to see the list of feedback, if there is any, as well as the Insert button and
the Delete button. Now you are ready to manage the feedback.

Creating Custom OpenCart Modules

[88]

Till now we have created the page to list the feedback and a form to edit, delete, and
insert the feedback. Now, you can also create the module for feedback by following
the steps in the previous chapters. For viewing the list of feedback at the frontend,
we have to use the link as follows and insert the link somewhere in the templates so
that visitors will be able to see the feedback list.

http://www.example.com/index.php?route=product/feedback

The Tips module
We are creating the Tips module. When the Tips module is activated at the admin
section from Admin | Extensions | Order Totals, it will be listed in the Order Totals
listing page, and you will see the Tips module activated at Shopping Cart. After
entering the amount and clicking on the Apply Tips button, the extra amount is
added to the order total, which adds to the total cost of the order.

Chapter 3

[89]

Creating the language file at the admin
section
To create a language file for the Order Total module, we have to create the file at the
total folder in the language folder. Navigate to admin/language/english/total/,
and create a tips.php file and insert the following lines of code:

<?php
$_['heading_title'] = 'Tips Fee';
$_['text_total'] = 'Order Totals';
$_['text_success'] = 'Success: You have modified tips fee total!';
$_['entry_total'] = 'Order Total:';
$_['entry_fee'] = 'Fee:';
$_['entry_tax_class'] = 'Tax Class:';
$_['entry_status'] = 'Status:';
$_['entry_sort_order'] = 'Sort Order:';
$_['error_permission'] = 'Warning: You do not have permission to
modify Tips fee total!';
?>

Creating the controller file at the admin
section
After creating the language file, we now need to create the controller file. Navigate
to admin/controller/total/ and create tips.php and insert the following code.
Most of the code has already been described, so we will skip the descriptions here.

<?php
class ControllerTotaltips extends Controller {
 private $error = array();
 public function index() {
 $this->language->load('total/tips');
 $this->document->setTitle($this->language
 ->get('heading_title'));
 $this->load->model('setting/setting');
 if (($this->request->server['REQUEST_METHOD'] == 'POST') &&
 $this->validate()) {
 $this->model_setting_setting->editSetting('tips', $this
 ->request->post);
 $this->session->data['success'] = $this->language
 ->get('text_success');
 $this->redirect($this->url->link('extension/total', 'token='
 . $this->session->data['token'], 'SSL'));
 }

Creating Custom OpenCart Modules

[90]

The group column in the database setting table has the value tips as the word
"tips" is passed from $this->model_setting_setting->editSetting('tips',
$this->request->post); and therefore each setting value of the Tips module
will have the tips value in the group column. When saved, we will see rows at the
setting table as shown in the following screenshot:

The following is the language section part in the controller to assign the variable,
which will be used on the template files:

$this->data['heading_title'] = $this->language
 ->get('heading_title');
$this->data['text_enabled'] = $this->language
 ->get('text_enabled');
$this->data['text_disabled'] = $this->language
 ->get('text_disabled');
$this->data['text_none'] = $this->language->get('text_none');
$this->data['entry_status'] = $this->language
 ->get('entry_status');
$this->data['entry_sort_order'] = $this->language
 ->get('entry_sort_order');
$this->data['button_save'] = $this->language->get('button_save');
$this->data['button_cancel'] = $this->language
 ->get('button_cancel');

if (isset($this->error['warning'])) {
 $this->data['error_warning'] = $this->error['warning'];
} else {
 $this->data['error_warning'] = '';
}

Up to this point, the language is loaded to the variable and passed to the template files.

$this->data['breadcrumbs'] = array();
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_home'),
 'href' => $this->url->link('common/home', 'token=' . $this
 ->session->data['token'], 'SSL'),
 'separator' => false
);

Chapter 3

[91]

$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('text_total'),
 'href' => $this->url->link('extension/total', 'token=' .
 $this->session->data['token'], 'SSL'),
 'separator' =>' :: '
);
$this->data['breadcrumbs'][] = array(
 'text' => $this->language->get('heading_title'),
 'href' => $this->url->link('total/tips', 'token=' . $this
 ->session->data['token'], 'SSL'),
 'separator' =>' :: '
);

Breadcrumbs are created in an array and passed to the template files.

$this->data['action'] = $this->url->link('total/tips', 'token=' .
 $this->session->data['token'], 'SSL');
$this->data['cancel'] = $this->url->link('extension/total',
 'token=' . $this->session->data['token'], 'SSL');

if (isset($this->request->post['tips_status'])) {
 $this->data['tips_status'] = $this->request
 ->post['tips_status'];
} else {
 $this->data['tips_status'] = $this->config->get('tips_status');
}
if (isset($this->request->post['tips_sort_order'])) {
 $this->data['tips_sort_order'] = $this->request
 ->post['tips_sort_order'];
} else {
 $this->data['tips_sort_order'] = $this->config
 ->get('tips_sort_order');
}
$this->template = 'total/tips.tpl';
$this->children = array(
 'common/header',
 'common/footer'
);
$this->response->setOutput($this->render());
}

protected function validate() {
 if (!$this->user->hasPermission('modify', 'total/tips')) {
 $this->error['warning'] = $this->language
 ->get('error_permission');
 }

Creating Custom OpenCart Modules

[92]

if (!$this->error) {
 return true;
} else {
 return false;
}
}
}
?>

Until here, the cancel and form action URL are defined, and the status of the Tips
module is assigned as per the active POST method, else from the database config
settings. Likewise, a sort order of the Tips module is assigned and the tips.tpl
template is rendered.

The validate function is to check whether the user has the permission to modify or
not. If they do, only then it returns true, else false.

Creating the template file at the admin section
Navigate to admin/view/template/total/ and create tips.tpl and insert the
following code:

<?php echo $header; ?>
<div id="content">
<div class="breadcrumb">
<?php foreach ($breadcrumbs as $breadcrumb) { ?>
<?php echo $breadcrumb['separator']; ?><a href="<?php echo
 $breadcrumb['href']; ?>"><?php echo $breadcrumb['text']; ?>
<?php } ?>
</div>
<?php if ($error_warning) { ?>
<div class="warning"><?php echo $error_warning; ?></div>
<?php } ?>
<div class="box">
<div class="heading">
<h1><imgsrc="view/image/total.png" alt="" /><?php echo $heading_title;
?></h1>
<div class="buttons"><a onclick="$('#form').submit();"
class="button"><?php echo $button_save; ?><a href="<?php echo
 $cancel; ?>" class="button"><?php echo $button_cancel; ?></div>
</div>
<div class="content">
<form action="<?php echo $action; ?>" method="post"
enctype="multipart/form-data" id="form">

Chapter 3

[93]

<table class="form">
<tr>
<td><?php echo $entry_status; ?></td>
<td><select name="tips_status">
<?php if ($tips_status) { ?>
<option value="1" selected="selected"><?php echo $text_enabled; ?></
option>
<option value="0"><?php echo $text_disabled; ?></option>
<?php } else { ?>
<option value="1"><?php echo $text_enabled; ?></option>
<option value="0" selected="selected"><?php echo $text_disabled; ?></
option>
<?php } ?>
</select></td>
</tr>
<tr>
<td><?php echo $entry_sort_order; ?></td>
<td><input type="text" name="tips_sort_order" value="<?php echo $tips_
sort_order; ?>" size="1" /></td>
</tr>
</table>
</form>
</div>
</div>
</div>
<?php echo $footer; ?>

Changes made in the cart file at the frontend
Navigate to catalog/view/theme/default/template/checkout/ and open cart.
tpl and paste the following code just before the <?php if ($voucher_status) {
?> code.

<?php if ($this->config->get('tips_status')==1) { ?>
<tr class="highlight">
<td><?php if ($next == 'tips') { ?>
<input type="radio" name="next" value="tips" id="use_tips"
 checked="checked" />
	 <?php } else { ?>
<input type="radio" name="next" value="tips" id="use_tips" />
<?php } ?></td>
<td>Enter the Tips</td>
</tr>
<?php } ?>

Creating Custom OpenCart Modules

[94]

The preceding code will show a radio button followed by the Enter the Tips text. On
selecting this radio button, div with the id of tips is displayed.

Now just before the <div id="voucher" class="content"> line, paste the
following code:

<div id="tips" class="content" style="display: <?php echo ($next
 == 'tips' ? 'block' : 'none'); ?>;">
<form action="<?php echo $action; ?>" method="post"
 enctype="multipart/form-data">
 Enter your amount
<input type="text" name="tips" value="" />
<input type="hidden" name="next" value="tips" />

<input type="submit" value="Apply Tips" class="button" />
</form>
</div>

It shows the Enter your amount form and an Apply Tips button.

Changes in the shopping cart page to show
tips
Navigate to catalog/controller/checkout/ and open cart.php. Look for //
Voucher and paste the following lines of code before it:

// Tips
if (isset($this->request->post['tips'])) {
 $this->session->data['tips'] = $this->request->post['tips'];
 $this->session->data['success'] = $this->language
 ->get('text_tips');
 $this->redirect($this->url->link('checkout/cart'));
}

It activates the session for total extension. While installing the Order Total module, it
is saved on the extension table as total just like the Tips module gets saved as shown
in the following screenshot:

So once the session of tips is activated, the entire total is calculated and we do not
need to work out another. We just need to activate the session of the tips, which we
have done with the preceding code. With this, our Order Total module is complete.

Chapter 3

[95]

Summary
In this chapter, we learned the ways to manage data. This was achieved by creating
pages, listing it out, inserting the data to the database and retrieving it either to display
or to edit, and finally deleting the data. Likewise, we showed you how to list the
data at the frontend by making the page. At the end, we created the Order Total Tips
module and showed you how it changed the order totals. Using this, you will be able
to create modules and pages to manage the data across OpenCart.

Index
A
Add Module button

effects 16
admin folder

changes 55
featured.php file, exploring 50-52
featured.tpl file, exploring 52
modifications 7, 8

admin module
language files, creating 16

admin section
controller, creating 17-22
controller file, creating at 71-92
files creating, for feedback 64
language file, creating at 64, 89
model file, creating at 65-71
template file, creating at 22-26, 78-92

affiliate 31, 32

C
cache 33
captcha 33, 34
cart 34, 35
cart file

modifications, at frontend 93
catalog folder

changes 55, 57
featured.php file, exploring 53, 54
modifications 8, 10

catalog folder frontend
model file, creating at 81

catalog (frontend) module
controller file, creating for 27, 29
language file, creating for 27

template file, creating for 29, 30
code, Featured module

exploring 49
config 35
controller

creating, in admin section 17-22
controller file

creating, at admin section 71-92
creating, at frontend 82-88
creating, for catalog (frontend) module 27,

29
currency 36, 37
customer 37-39

D
database 39
database tables

for feedback 61- 63
document 40, 42

E
encryption 42

F
Featured module

code, exploring 49
featured.php file under catalog folder,

exploring 53
featured.tpl file under admin folder, explor-

ing 52
in OpenCart 1.5.5.1, configuring 48, 49

featured.php file
under admin folder, exploring 50-52
under catalog folder, exploring 53, 54

[98]

featured.tpl file
under admin folder, exploring 52

feedback
about 61
database tables 61-63
files, creating for admin section 64

frontend
cart file, modifications 93, 94
controller file, creating at 82-85
language file, creating at 82
template file, creating at 85-87

G
getForm() function 78
getList() function 74
Global library methods

affiliate 31, 32
cache 33
captcha 33, 34
cart 34, 35
config 35
currency 36, 37
customer 37, 39
database 39, 40
document 40-42
encryption 42
language 43
length 43
log 44
mail 44
pagination 44
request 45
response 45
session 45
tax 45
URL 46
user 46, 47
weight 47

H
Hello World Content field 11, 12
Hello World module

creating 5, 6

L
language 43
language file

creating, at admin section 64, 89
creating, at frontend 82
creating, for admin module 16
creating, for catalog (frontend) module 27

length 43
log 44

M
mail 44
model file

creating, at admin section 65-71
creating, at catalog folder frontend 81

Model View Controller (MVC) language
pattern 5

module
Add Module button, effects 16
admin folder, modifications 7, 8
catalog folder, modifications 8-10
configuring 11, 13
Hello World module, creating 5, 6
installing 10
layouts 13, 14
positions 14
same module, displaying in different layout

15
sort order 15
status 15
uninstalling 16

O
oc_feedback_description table 62
oc_feedback_to_store table 62
off-site payment 58
on-site payment 58
OpenCart 5
OpenCart 1.5.5.1

Featured module, configuring 48, 49
Order Total module 58, 59

[99]

P
pagination 44
payment module

about 57
off-site payment 58
on-site payment 58

positions, module
column bottom 14
column left 14
column right 14
column top 14

R
request 45
response 45

S
session 45
shipping module

about 54
admin folder, changes 55
catalog folder, changes 55, 57

shopping cart page
to show tips, modifications 94

sort order 15

T
tax 45
template file

creating, at admin 22-27
creating, at admin section 92
creating, for catalog (frontend) module 29,

30
creating, for form 78-80
creating, for list 78-80

Tips module
about 88
cart file at frontend, modifications 93
controller file, creating at admin section

89-92
language file, creating at admin section 89
shopping cart page to show tips,

modifications 94
template file, creating at admin section 92

U
uninstall() 16
update function 73
URL 46
user 46

V
validateForm()function 78

W
weight 47

Thank you for buying
Getting started with OpenCart Module Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant E-commerce with
OpenCart: Build a Shop [Instant]
ISBN: 978-1-78216-968-0 Paperback: 70 pages

A fast-paced, practical guide to setting up your own
shop with OpenCart

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Install and configure OpenCart correctly

3.	 Tackle difficult tasks such as payment
gateways, shipping options, product attributes,
and managing orders

Spring Python 1.1
ISBN: 978-1-78216-122-6 Paperback: 206 pages

Over 50 recipes to help you build engaging,
responsive E-commerce sites with Drupal Commerce

1.	 Learn how to build attractive eCommerce sites
with Drupal Commerce

2.	 Customise your Drupal Commerce store for
maximum impact

3.	 Reviewed by the creators of Drupal Commerce:
The CommerceGuys

Please check www.PacktPub.com for information on our titles

OpenCart 1.4 Template Design
Cookbook
ISBN: 978-1-84951-430-9 Paperback: 328 pages

Over 50 incerdibly effective and quick recipes for
building modern eye-catching OpenCart templates

1.	 Customize dynamic menus, logos, headers,
footers, and every other section using tricks you
won't find in the official documentation

2.	 A great mix of recipes for beginners,
intermediate, and advanced OpenCart template
designers

3.	 Develop and customize dynamic, powerful
OpenCart templates to make your website
stand out from the crowd

OpenCart 1.4: Beginner's Guide
ISBN: 978-1-84951-302-9 Paperback: 240 pages

Build and mange professional online shopping stores
easily using OpenCart

1.	 Develop a professional, easy-to-use, attractive
online store and shopping cart solution
using OpenCart that meets today's modern
e-commerce standards

2.	 Easily integrate your online store with one
of the more popular payment gateways like
PayPal and shipping methods such as UPS and
USPS

3.	 Provide coupon codes, discounts, and
wholesale options for your customers to
increase demand on your online store

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenCart Modules
	Creating the Hello World module
	Changes made in the admin folder
	Changes made in the catalog folder
	Installing, configuring, and uninstalling
a module
	Installing a module
	Configuring the module
	Layouts for the module
	Positions for the module
	Status of the module
	Sort order of the modules
	Show same module in different layouts
	Effects of clicking on the Add Module button
	Uninstalling the module

	File structure – admin and frontend
	Creating the language files for the admin module in OpenCart
	Creating the controller in the admin section of the OpenCart module
	Creating the template file at admin in the OpenCart module
	Breadcrumbs section for the module:
	Creating the language file for catalog (frontend) module in OpenCart
	Creating the controller file for catalog (frontend) module in OpenCart
	Creating the template file for catalog (frontend) module in OpenCart

	Summary

	Chapter 2: Describing The Code of Extensions
	Global library methods
	Detailed description of the Featured module
	Configuring the Featured module in OpenCart 1.5.5.1
	Exploring the code used in the Featured module
	Exploring the featured.php file under the
admin folder
	Exploring the featured.tpl file under admin folder
	Exploring the featured.php file under the catalog folder

	The Shipping module
	Changes made in the admin folder
	Changes made in the catalog folder

	The Payment module
	Off-site payment
	On-site payment

	The Order Total module
	Summary

	Chapter 3: Creating Custom
OpenCart Modules
	Getting started with feedback management
	Database tables for feedback
	Creating files at the admin section for feedback
	Creating the language file at the admin section
	Creating the model file at the admin section
	Creating the controller file at the admin section
	Creating the template files for form and list at
the admin
	Creating the model file at the catalog folder frontend
	Creating the language file at the frontend
	Creating the controller file at the frontend
	Creating the template file at the frontend

	The Tips module
	Creating the language file at the admin section
	Creating the controller file at the admin section
	Creating the template file at the admin section
	Changes made in the cart file at the frontend
	Changes in the shopping cart page to show tips

	Summary

	Index

